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1 Introduction

The dynamics of a two-dimensional ideal incompressible �uid is described by the following equation

∂w
∂t
+ J(ψ, w) = 0 (1.1)

where J is the Jacobian, ψ and w are the stream function and vorticity related by the ratio△ψ = w. In addi-
tion to the conservation law for the momentum P and energy E, equation (1.1) in a doubly-periodic domain
possesses an in�nite number of invariants (Casimirs) of the form

G = ∫Φ(w)dxdy = const (1.2)

whereΦ is a smooth function. The most simple Casimir invariants are the integral vorticity Ω and the enstro-
phy Z (the Casimirs obtained with the choice Φ(w) = w and Φ(w) = w2/2 in expression (1.2), respectively).

It is assumed that the most important invariants are the enstrophy Z and the energy E determining the
mean weighted square of the wave number over the energy [10]:

k2 =
∫ k2E(k)dk
∫ E(k)dk

=
Z
E

(1.3)

where E(k) is the spectral density of the kinetic energy. The number k2 determines the typical scale of the
�ow. The preservation of the number k2 poses strong restrictions on the energy transport over the spectrum.
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We generalize system (1.1) by adding a forcing F and dissipative terms D. In this case we have
∂w
∂t
+ J(ψ, w) = F + D. (1.4)

Under the conditions of dynamic chaos, a state of statistical equilibrium is established in such system in the
course of time. This state is characterized by mean values over time for some functionals dependent on the
solution. The system obtained in this case has no suchwide class of invariants as system (1.1) has. The follow-
ing question naturally arises here: Is it necessary to require ful�llment of conservation lawsmentioned above
in the asymptotics F → 0 and D → 0 in the case of numerical solution of equations (1.4)? Such formulation
of the problem is natural if we suppose that the equilibrium distributions of the energy and enstrophy over
the spectrum have inertial intervals where the dissipation and excitation of the corresponding invariants are
small. In what follows, speaking on the dynamics of system (1.4), we mean that ‘conservation laws’ are those
of system (1.1). This issue has a certain practical sense because the problem of numerical climate simulation
is focused on the study of equilibrium states and geophysical �ows are quasi-two-dimensional.

Due to the nonlinear nature of equations, numerical errors can be in any range of scales. We may men-
tion aliasing errors as an example. Even if numerical errors are concentrated in small scales, then, as was
indicated in [17], these errors can be transmitted in time over the spectrum into larger scales due to nonlinear
interactions. In the case when the time of such transfer is less than the typical time of energy notable pro-
cesses the distribution of energy over the spectrummay be violated. The presence or absence of ‘conservation
laws’ for the scheme may a�ect the form of numerical errors and their distribution over scales.

Discrete approximations of equations (1.1) allow us to preserve only a �nite number of invariants. For ex-
ample, the Arakawa scheme [3] beingmost appropriate from the viewpoint of the number of preserved invari-
ants possesses discrete conservation laws for the energy, enstrophy, integral vorticity, andmomentum. How-
ever, other numerical methods are also of some interest, in particular, those are semi-Lagrangian schemes
[23] for which even the conservation of the �rst moments (in our case, integral vorticity) is a rather di�cult
problem.

In this paper we study how the conservation of invariants in numerical schemes may a�ect the repre-
sentation of the complex turbulent �ow properties. As a model problem we take the problem of simulation
of a homogeneous isotropic turbulence excited by an external stochastic forcing with a �xed spatial scale.
According to the theory [12] (Kraichnan–Leith–Batchelor (KLB)), the energy of external forcing is transported
to large scales, and the enstrophy is transported to small ones. The corresponding inertial spectral ranges are
formed if the dissipation is weak in comparison with the nonlinear interactions. The KLB theory predicts the
appearance of an equilibrium state and its form. According to the KLB theory, regardless of the type of forcing
chosen in a narrow spectral interval near the wave number kf , the spectrum of the energymust have the form

E(k) = C1ε2/3k−5/3, k < kf (1.5)
E(k) = C2η2/3k−3, k > kf (1.6)

where the constant C1 is approximately evaluated [6] as C1 ≈ 6; ε and η are incoming �uxes of energy and
enstrophy per surface unit.

Predictions of the theory regarding the inverse energy cascade are con�rmed in many numerical exper-
iments [6, 25]. In the range of the direct enstrophy cascade the energy spectrum slope obtained numerically
usually di�ers a lot from the theoretical predictions, in order to achieve a compliance with the KLB theory,
one should either increase the spatial resolution (for example, a grid of 32768 × 32768 nodes was used in
[7]), or use specially selected turbulent closures (see [18]). We consider low resolutions of order 360 × 360,
which approximately corresponds to one degree resolution in atmospheric models and so we do not analyze
in detail the energy distribution in the direct cascade (in the domain of large wave numbers).

We consider two types of problems depending on the spatial scale of forcing:
1. A small-scale forcing. The typical scale of forcing equals several mesh sizes (4 or 6 depending on the

resolution) or 450 kilometers if we draw an analogy with models of atmosphere.
In this case it is important to check that a proper inverse energy cascade is formed. It should be noted
that, according to [6], when using spectral methods, an inverse cascade can exist under conditions when
the direct cascade is virtually absent due to low spatial resolution.
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2. A large-scale forcing. The forcing is applied on thewavenumber 4 and corresponds to a scale about 10000
km in models of the atmosphere. Such forcing corresponds to an atmospheric cyclogenesis caused by
baroclinic instability and large-scale orography. In this case the main interest is in the formation of a
proper direct cascade.

Since the main goal of the paper is to obtain recommendations for the development of promising computa-
tional cores for climate models of the INM RAS, we study the schemes traditionally used in various models
of atmosphere and ocean of the INM RAS [1, 9], the schemes implemented in new versions of the forecast
weather model SLAV [22, 24], and also classic Arakawa schemes [3] and semi-Lagrangian schemes including
those presented in [28].

2 Equations and parameters of the model

2.1 Equations of the model in velocity–pressure and vorticity–stream function
variables

We consider the dynamics of a two-dimensional incompressible �uid in the square (x, y) ∈ [0, 2π] × [0, 2π]
with periodic boundary conditions in Cartesian coordinates. In the velocity–pressure variables equation of
motion (1.4) can be written in the following form:

∂u
∂t
+ (u ⋅ ∇)u = −∇p − ν △2 u − αu + f (2.1a)

∇ ⋅ u = 0. (2.1b)

Here u = (U, V) is the velocity, p is the pressure, f is the forcing (external force acting on the �ow), α > 0 is
the Rayleigh friction coe�cient. The dissipative term acting on small-scale components of the �ow is de�ned
as a biharmonic operator with the coe�cient ν > 0. This choice is caused by the necessity to separate spatial
scales of forcing and dissipation under a coarse spatial resolution. This corresponds to the common practice
to dump numerical noise in models of atmosphere and ocean where dissipative terms acting mainly on the
short-wave part of the spectrum are often used.

In the vorticity–stream function variables we have the following notation:

∂w
∂t
+ (u ⋅ ∇)w = −ν △2 w − αw + f (2.2a)

△ ψ = w (2.2b)

where w is the vorticity, ψ is the stream function, f is the forcing.
Variables in equations (2.1) and (2.2) are related by the following equalities

u = ( −
∂ψ
∂y

, ∂ψ
∂x )

(2.3)

w = ∂V
∂x
−
∂U
∂y

. (2.4)

The approximation of equations (2.1), (2.2) uses uniform spatial gridwith themesh sizes (hx , hy) and time
step τ. We de�ne the di�erence operators as follows

δxiφ =
φ(xi + hxi/2) − φ(xi − hxi/2)

hxi
(2.5)

φxi =
φ(xi + hxi/2) + φ(xi − hxi/2)

2
(2.6)

∇h ⋅ u = δxU + δyV (2.7)

△h φ = ∇2
hφ = δx(δxφ) + δy(δyφ). (2.8)
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2.2 External forcing

The forcing has di�erent form depending on chosen variables. In the variables (u, p) it is given as

f = [Af
Bf
] sin(kxx + kyy + φ) (2.9)

and in the variables (ψ, w) it is calculated by the formula

f = Cf sin(kxx + kyy + φ). (2.10)

Hereφ ∈ [0, 2π] is a randomphase; thewave vectork = (kx , ky) lies in the narrow shell near thewave number
kf , i.e., ‖k‖2 ∈ [kf − kδ/2, kf + kδ/2]. The numbers kx , ky are taken integer and the typical width kδ of the
shell equals 4. The forcing is uncorrelated in time, i.e., (φ, kx , ky) are pseudo-random variables.

In the case of natural variables (u, p), the amplitudes Af and Bf are taken to provide the divergence-free
property for the forcing in its spatial approximation, i.e.,

∇h ⋅ fh = 0 (2.11)

where fh is the discrete analogue of the forcing and ∇h is �nite di�erence gradient operator (2.7).
As shown in [2], the in�ux of energy ε for equations written in form (2.1) depends on the time step and is

calculated as
ε = τ

4
(A2f + B

2
f ). (2.12)

All �nite di�erence schemes in this paper are constructed on the same staggered C-grid (in the terminol-
ogy of Arakawa) and have the same (second) order of spatial approximation. Specifying the desirable energy
in�ux ε and time step τ, we can calculate the coe�cients Af , Bf from equations (2.12) and (2.11), and the
coe�cient Cf is obtained from the discrete relation between the vorticity and velocity on the C-grid.

The in�uxes of enstrophy and energy depend on the relation between di�erence analogues of these in-
variants. Semi-Lagrangian schemes in the variables (ψ, w) are implemented on an A-grid and to provide the
same relations between di�erence analogues of the energy and enstrophy as this is on a C-grid the proce-
dure of reconstruction of the velocity u according to formula (2.3) is performed by application of the Fourier
transform with the use of modi�ed wave numbers corresponding to the C-grid. As a result of such approach,
numerical experiments with all schemes were performed for external forcing providing the same in�uxes of
energy and enstrophy.

2.3 Dissipative terms

The coe�cient at the biharmonic operator ν is taken from the condition of equality of enstrophy in�ux from
the external forcing η and its small-scale dissipation ην:

ην = η. (2.13)

The original idea of such approach belongs to Lilly [13] for the case of three-dimensional turbulence and
turbulence closure of Smagorinsky. The approach presented below is more close to ideas of [5]. However,
none of those papers took into account the di�erence form of the dissipative operator, but the consideration
of such operator leads to the considerable correction of the coe�cient ν.

It is known that, according to theKLB theory [12], the spectral density of energyhas form (1.6) on the direct
enstrophy cascade, and the approximate value of the constant C2 ≈ 1.5 can be calculated from numerical
experiments with high resolution. If we know the form of the energy spectrum and dissipative operators, we
can calculate ην. For the sake of simplicity, let us consider the action of the di�erence biharmonic operator
onto the function w = exp(ikx) of one variable, i.e.,

△2hw = k
�4w
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where k� = sin(khx/2)/(hx/2) is the modi�ed wave number and △h is the di�erence analogue of Laplace
operator (2.8).

The contribution of the biharmonic operator to equation of dynamics (2.2) written in the Fourier space
has the form

∂w(k)
∂t
= −νk�4w(k) (2.14)

wherew(k) is the Fourier transformof the functionw. Multiplying (2.14) byw∗(k) (‘∗’ is the symbol of complex
conjugation) and integrating over the circumference S of radius k in the Fourier space,weobtain the following
equation for the balance of enstrophy:

∂Z(k)
∂t
= −2νk�4Z(k) (2.15)

where Z(k) = 1
2 ∮S w(k)w

∗(k) is the spectral enstrophy density. If we know the relation between the energy
and enstrophy

Z(k) = k�2E(k)
which is valid for a C-grid, we can calculate the dissipation of enstrophy by balance formula (2.15) and form
(1.6) of the spectral density E(k):

ην =
kmax

∫
kf

∂Z(k)
∂t

dk = −2νC2η2/3 kmax

∫
kf

k−3k�6dk. (2.16)

For su�ciently large scales of forcing kf (with the wavelength not less than three steps of the grid), the
integral can be approximated with a good accuracy by the approximate expression

kmax

∫
kf

k−3k�6dk ≈ 0.16 kmax

∫
kf

k3dk = 0.16(k4max − k4f )/4.

Equating dissipation (2.16) and the in�ux of enstrophy η, we can calculate the dissipation parameter

ν = 8.32 η1/3
k4max − k4f

. (2.17)

Taking into account the form of the biharmonic operator and the di�erence relation between the enstrophy
and energy, we can increase the coe�cient ν approximately 1/0.16 ≈ 6 times. Formula (2.17) gives a good
estimate in the case when the direct cascade of enstrophy has the su�cient length and slope (−3) close to the
KLB theory. If the enstrophy interval is short, then the coe�cient should be decreased for empirical reasons.

The coe�cient ν is taken the same for schemes in the variables (u, p) and (w, ψ), and biharmonic oper-
ators are equivalent from the viewpoint of the dissipation of enstrophy and energy due to the choice of the
same C-grid for all �nite di�erence methods and the use of Fourier transform for semi-Lagrangian methods
in the variables (w, ψ) (as was described in Section 2.2).

The coe�cient of Rayleigh friction is taken so that the inverse cascade of energy has su�ciently large
extent.

3 Numerical methods

3.1 Finite di�erence schemes in the variables (u, p)

System of equations (2.1) is solved by projection method [8]. The intermediate value u� is obtained from the
following scheme:

u�
h − u

n
h

τ
= −[(u ⋅ ∇)u]n+1/2h − ∇hpnh − ν[△

2
huh]

n+1/2 − αun+1/2h + fh
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where the values [(u ⋅ ∇)u]n+1/2h , ν[△2u]n+1/2h , αun+1/2h are calculated on the (n + 1/2)th time layer by the
second order Adams–Bashforth scheme

φn+1/2 = 3
2
φn − 1

2
φn−1.

The form of the scheme in time does not a�ect the results of our work because we use small time step (CFL<
0.15); the INMCM model [1] uses the leapfrog scheme of the second order of approximation. The spatial dis-
cretization of the advection term (u ⋅ ∇)u is denoted by the index h and is changed from a scheme to scheme.

After that we implement the projection onto the subspace of divergence-free �elds, i.e.,

un+1h = u
�
h − τ∇hφ

n+1
h

and recalculate the pressure
pn+1h = p

n
h + φ

n+1
h

where φn+1h is chosen from the condition

△hφn+1h =
∇h ⋅ u�

h
τ

.

3.1.1 Scheme used in the INMOM ocean model

The INMOM model [9] uses the scheme from [15] preserving the energy and implemented with the use of
central di�erence approximation on a staggered C-grid for the term (u ⋅ ∇)u written in a skew-symmetric
form, i.e.,

[(u ⋅ ∇)U]h =
1
2 [

UxδxU
x
+ VxδyU

y
] +

1
2 [
δx(U

xUx) + δy(V
xUy)]

[(u ⋅ ∇)V]h =
1
2 [

UyδxV
x
+ VyδyV

y
] +

1
2 [
δx(U

yVx) + δy(V
yVy)] .

3.1.2 Scheme used in the INMCM atmosphere model

The model of the atmosphere included into the INMCM climate model [1] uses one of Arakawa schemes [4].
It preserves the angular momentum on a sphere. It can be obtained from consideration not only the usual
coordinate system (x, y), but also the additional system (x�, y�) obtained on a square grid by counterclockwise
rotation by 45 degrees.

The scheme has the following form of a linear combination of the approximations written in two coordi-
nate systems [4]:

[(u ⋅ ∇)U]h =
2
3 [

UxδxU
x
+ VxδyU

y
] +

1
3 [
U�δx�Ux� + V�δy�Uy�]

[(u ⋅ ∇)V]h =
2
3 [

UyδxV
x
+ VyδyV

y
] +

1
3 [
U�δx�Vx� + V�δy�Vy�] .

3.2 Finite di�erence schemes in variables (ψ, w)

System of equations (2.2) is solved in two stages. At the �rst stage we solve evolution equation (2.2a) and
obtain the vorticity wn+1 on the next time layer by the second order Adams–Bashforth scheme. At the second
stage we reconstruct the stream function ψn+1 from the vorticity wn+1 according to Poisson equation (2.2b)
and using discrete Laplace operator (2.8).
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3.2.1 Arakawa schemes

Several schemes possessing various conservation lawswere obtained in [3]. They are based on three di�erent
forms of advective term in equation (2.2a). It is known that

(u ⋅ ∇)w = J(ψ, w)

where J is the Jacobian of the mapping. Function J(ψ, w) can be expressed in three following ways:

J1 = −
∂ψ
∂y

∂w
∂x
+
∂ψ
∂x

∂w
∂y

(3.1a)

J2 = −
∂
∂x (

∂ψ
∂y
w) + ∂∂y (

∂ψ
∂x
w) (3.1b)

J3 =
∂
∂x (

∂w
∂y
ψ) − ∂∂y (

∂w
∂x
ψ). (3.1c)

If we mark the central di�erence approximation of these Jacobians with the index h, then the scheme pre-
serving the enstrophy Z takes the form

1
2
( J1h + J2h )

for the scheme preserving the energy E we have

1
2
( J1h + J3h )

for that preserving the enstrophy and energy ZE we have

1
3
( J1h + J2h + J3h )

and for the case of absence of quadratic invariants N we have

J1h .

3.3 Semi-Lagrangian methods in the variables (ψ, w)

System of equations (2.2) is solved in two steps similar to the case of previous Section 3.2. However, the recon-
struction of the stream function ψn+1 from the vorticity wn+1 is followed by the determination of the velocity
un+1 on the A-grid (as was described in Section 2.2). The following semi-Lagrangianmethod is used for recal-
culation of wn+1 on the next time layer:

wn+1A − w
n
D

τ
= F(wn)A

where A are the arrival points of the trajectory positioned at the grid nodes, D are the departure ones. Since
the dissipative terms and the external forcing do not require high calculation accuracy, the right-hand side
F(w) is approximated in time with the �rst order of accuracy. The value wnD is calculated by interpolation,
and the schemes di�er from each other only in the form of interpolant. The determination of trajectories is
performed by the SETTLS scheme [11] used in the SLAV model [24]. For the characteristic equation

dx
dt
= u

it has the form
xn+1A − x

n
D

τ
=
1
2
([2un − un−1]D + unA). (3.2)

The scheme is implicit with respect to the point D and is solved iteratively in 5 iterations with the use of cubic
interpolation of the velocity at the point D.
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3.3.1 Types of interpolation

Wedi�erentiate semi-Lagrangianmethods in the type of one-dimensional interpolation only. There aremany
ways to represent a two-dimensional problemof interpolation as a sequence of one-dimensional ones [20, 28].
Among all methods we choose the cascade approach [20] because it is used in the new version of the SLAV
model [22]. In addition to the cascade approach, we also tested themethod of tensor product [28], and we did
not detect any signi�cant di�erences in our experiments.

We studied the following types of one-dimensional interpolation:
1. Cubic Lagrange interpolation [14] (marked as ‘cubic’ in �gures).
2. Cubic spline with periodic boundary conditions [26] (marked as ‘spline’).
3. Hermite interpolation (marked as ‘hermite’). It satis�es all necessary and su�cient conditions of mono-

tonicity [28] (the monotonicity means the monotonicity of the interpolant on the grid step). We take the
monotonicity conditions ‘NCM1’ and ‘SCM’ from [28]. To construct the interpolant on a segment, we have
to know the values of the function and its derivatives at the segment endpoints. The values of the func-
tion are known and the values of the derivative are calculatedwith the use of cubic interpolant (see ‘cubic
derivative estimate’ in [28]). Further, the values of the derivative are tested formonotonicity. Ifmonotonic-
ity conditions are ful�lled, the interpolation remains cubic, otherwise some correction follows.

4. Cascade �nite-volume semi-Lagrangian scheme [16] (marked as CCS). Using the cascade approach, a se-
quence of one-dimensional redistributions of mass contained in a computation cell is performed in this
scheme. Given the one-dimensional conservation law of form

∂ρ
∂t
+
∂ρux
∂x
= 0

the redistribution of mass is expressed as

∫
A(tn+1) ρdx = ∫A(tn) ρdx (3.3)

where A(t) is the volume moving with the �uid and coinciding with a computation cell at the time mo-
ment tn+1. The integral in the right-hand side of formula (3.3) is calculated approximately with the use of
conservative piecewise-parabolic interpolation.

Thebasic interpolant in thedynamical core of theSLAVmodel is cubic, it canbe switched to a spline interpola-
tion with approximate matrix inversion, and conservative CCS scheme is used for transfer of admixtures [22].

3.4 Semi-Lagrangian methods in the variables (u, p)

System of equations (2.1) is solved by a projection method similar to the approach described in Section 3.1
using semi-Lagrangianmethods described in Section 3.3, however, the processing of the pressure is di�erent
and has the form of Crank–Nicolson scheme [29]:

un+1A − u
n
D

τ
= −

1
2
(∇hpn+1A + ∇hp

n
D).

4 Numerical experiments

4.1 Small-scale forcing

Equations (2.1), (2.2) are solved by di�erent numerical schemes described in Section 3 on a grid with the
resolution 540 × 540. The maximum wave number in this problem is kmax = N/2 = 270 and the minimum
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one is kmin = 1. The forcing is de�ned at a spherical shell of thickness kδ = 4 near the wave number kf = 90,
which corresponds to short waves with the wavelength 6h. The forcing is uncorrelated in time and provides
the energy in�ux ε = 1.534 ⋅ 10−4 in average per surface unit. The Rayleigh friction coe�cient is α = 0.012
and the coe�cient at the biharmonic operator is calculated by formula (2.17) (but then is decreased 4 times
because the enstrophy interval is short), i.e., ν = 4.26 ⋅ 10−10. In order to indicate typical features of the
schemes, we increase or decrease the original resolution of the problem; in this case all parameters of the
problem remain as before except for the coe�cient at the biharmonic operator which varies according to
formula (2.17) (the coe�cient decreases 4 times).

The equations are solved until the time moment t = 100 (approximately 4000 steps in time for semi-
Lagrangian schemes) to reach the state of statistical equilibrium, and after that the calculations for next 500
time units are performed to obtain averaged values of parameters using for this averaging each tenth time
step. The Courant number (CFL) was taken equal to 1 for semi-Lagrangian systems because it is optimal from
di�erent points of view. As a rule, semi-Lagrangian methods are not used for small CFL, on the other hand,
the choice CFL> 1 can lead to the violation of stability condition due to the intersection of the Lagrangian
trajectories. Finite di�erence schemes are calculated for CFL= 0.15. The Courant number is obtained taking
into account the maximal velocity in the high resolution model (HRM). This model is calculated with the use
of ZE scheme on a more �ne grid of 2016 × 2016 nodes and serves as a reference solution.

The inverse energy cascade is responsible for the level of energy in the system. This cascade forms an
energy �ow to large scales where it is dissipated by Rayleigh friction, and hence we can express the energy
level in the following simple form:

E = ε
2α

. (4.1)

The reference HRM solution suits well relation (4.1), but for the resolution of 540× 540 it is worse because of
scheme e�ects.

4.1.1 Finite di�erence schemes

The equilibrium occurs in the system because of the balance between the in�ux of forcing and dissipation
caused by scheme e�ects, the biharmonic �lter, and Rayleigh friction. The averaged values of the �uxes
caused by these three factors and the levels of quadratic invariants are listed in Table 1. The values of lev-
els of invariants are normalized by the corresponding values in HRM. The in�uxes are normalized by the
generation of the forcing. Negative values correspond to dissipation, positive ones to generation. Thus, the
sum of values of the cells ‘scheme’, ‘�lter’, ‘friction’ equals 100%.

The spectral energy density for the standard resolution of 540 × 540 and reduced one 360 × 360 (the
wave length of the forcing is equal to 4h) are shown in Fig. 1. This �gure illustrates the process of violation
of the inverse cascade for coarse resolutions. As seen from Fig. 1b, independently of the variables involved
in notation of equations practically all �nite di�erence schemes have a similar form of spectrum in large
scales except for two schemes, namely, E and INMOM, which preserve the energy only. These schemes have
su�ciently low level of energy because they generate the enstrophy in small scales where it is dissipated by
the numerical �lter, which implies the dissipation of energy. A higher generation of enstrophy is observed for
the scheme N (139%), however, this does not lead to the di�erences in energy spectrum in large scales due to
the fact that it is accompanied by a considerable arti�cial generation of energy (36%).

The INMCM scheme has the highest level of energy and it is even higher than for the scheme ZE with two
quadratic invariants. This occurs due to two reasons. First, it is practically conservative relative to energy,
namely, −0.33%. Second, the enstrophy is dissipated by the scheme, namely, −32%. The dissipation of the
enstrophy by the scheme reduces the impact of numerical �lter, which, in contrast to the scheme, dissipates
the energy together with the enstrophy.
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(a) Resolution 540 × 540. (b) Resolution 360 × 360.

Figure 1. Energy spectrum in the logarithmic scale for �nite di�erence schemes in the experiment with small-scale forcing,
dotted line indicates the position of forcing.

Table 1. Balance of energy and enstrophy for �nite di�erence schemes in the experiment with small scale forcing, the resolu-
tion is 540 × 540.

Scheme
Energy Enstrophy

level influx level influx
scheme �lter friction scheme �lter friction

INMOM 64% 0% -38% -62% 71% 23% -110% -13%
INMCM 75% -0,33% -27% -72% 67% -32% -55% -12%

Z 64% -5% -34% -62% 66% 0% -84% -12%
E 49% 0% -53% -47% 86% 61% -145% -16%
ZE 66% 0% -37% -63% 75% 0% -87% -14%
N 68% 36% -71% -65% 99% 139% -221% -18%

HRM 100% 0% -4% -96% 100% 0% -83% -17%

4.1.2 Semi-Lagrangian methods

As seen from Fig. 2, CCS interpolants (in the variables (ψ, w)) and spline interpolants (in the variables (u, p))
are the most close to HRM and, according to Table 2, their energy and enstrophy characteristics di�er from
each other by several percents, which indicates good dissipative properties of the CCS scheme because the
spline interpolation is known for its not highdissipative properties. CCS is the only interpolant in the variables
(ψ, w) having a proper form of the energy spectrum (energy is not accumulated in large scales). Below we
study only three remaining interpolants.

As shown in [27], the semi-Lagrangian method with cubic interpolation and also with interpolants ob-
tained on the base of cubic polynomials (Hermite, spline) is dissipative. This means that we can observe the
dissipation of the square of the transported variable. In the case of variables (u, p)we should expect dissipa-
tion of the energy by the scheme and this was con�rmed in our experiments. In the case of variables (ψ, w)
we may expect only dissipation of the enstrophy, but the energy may be involved in di�erent processes, i.e.,
generation (Hermite), dissipation (cubic, CCS), and the case close to conservation (spline).

A large number of Hermite interpolantswere studied in [27] for the problemof transfer of a passive admix-
ture by a three-dimensional turbulence �eld. In this case themain di�erence between interpolants was in the
level of dissipation. In our experiments in the variables (u, p) the di�erence between interpolants similarly
consists in the level of dissipation, which determines the level of energy in the system. The form of energy
spectrum is correct here in contrast to semi-Lagrangian methods in the variables (ψ, w).
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(a) Variables (ψ, w). (b) Variables (u, p).
Figure 2. Energy spectrum in a logarithmic scale for semi-Lagrangian schemes in the experiment with a small-scale forcing, the
dotted lines indicates the position of forcing.

Table 2. Balance of energy and enstrophy for semi-Lagrangian schemes in the experiment with a small-scale forcing, resolution
540 × 540.

Scheme
Energy Enstrophy

level influx level influx
scheme �lter friction scheme �lter friction

(ψ,w) cubic 26% -64% -11% -25% 32% -77% -17% -6%
Hermite 211% 110% -7% -203% 21% -85% -11% -4%
spline 85% 3% -22% -81% 51% -38% -52% -9%
CCS 59% -27% -17% -57% 46% -59% -33% -8%

(u,p) cubic 23% -68% -10% -22% 32% -80% -14% -5%
Hermite 35% -53% -13% -34% 39% -69% -23% -7%
spline 58% -26% -18% -56% 48% -50% -40% -8%
HRM 100% 0% -4% -96% 100% 0% -83% -17%

Among all schemes presented in the paper, only cubic, Hermite, and spline schemes in the variables
(ψ, w) do not preserve the integral vorticity. We can show that all �nite di�erence schemes in the variables
(ψ, w) described in this paper preserve it, and all the schemes in the variables (u, p) preserve an analogue of
integral vorticity if we introduce the vorticity at nodes of C-grid by numerical di�erentiation of the velocity. As
seen from Fig. 2, all schemes not possessing the conservation law for the integral vorticity accumulate the en-
ergy in large scales, Hermite scheme possesses this property for the resolution increased twice (not shown in
the picture). The amount of energy accumulated in large scales is in accordance with the non-conservativity
rate of the scheme, it was shown in [27] that the Hermite scheme is the most non-conservative among the
schemes presented in the paper. In order to con�rm the importance of the integral vorticity conservation, we
studied �nite di�erence upwind schemes of the 2nd and 3rd orders in the variables (ψ, w) written in conser-
vative and non-conservative forms, and similar e�ects were revealed for non-conservative schemes in large
scales (not shown in Fig. 2).

For conservative schemes, for example, for CCS there exists a certain time interval for energy transport
over the spectrum, and so, starting an experiment, we see that the energy is transported to large scales grad-
ually. However, this is not the case for cubic, Hermite, spline schemes, the energy is transported to the largest
scales immediately after start of calculations. The excessive energy transport to large scalesmay be explained
by incorrect description of nonlinear interactions in those schemes. In the case of Hermite scheme, aliasing
errors play a considerable role. Removing these errors with the use of a �lter for all harmonics with the wave-
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(a) Finite di�erence schemes. (b) Semi-Lagrangian schemes, variables (ψ, w).
Figure 3. Energy spectrum in the logarithmic scale in the experiment with large-scale forcing, dotted line denotes the position
of forcing.

length lesser than 4h [19], one can change energetic properties of the scheme (energy generation is replaced
by dissipation in the scheme), but the accumulation of energy at large scales remains.

4.2 Large-scale forcing

The resolution of the computational grid was taken equal to 360×360 points. The forcing was near the wave
number kf = 4with the thickness of the circular shell in the spectral space equal to kδ = 4. The energy in�ux
ε and the coe�cient α of Rayleigh friction were taken the same as in the experiment with small-scale forcing.
The coe�cient at the biharmonic operator was taken equal to ν = 1.06 ⋅10−9 and was obtained from formula
(2.17). The equations were solved until the statistical equilibrium at t = 1000 and then the calculations were
continued for 80000 time units to obtain averaged values with high accuracy. The calculations on the grid of
1008 × 1008 nodes were taken as the reference HRM solution.

Figure 3 shows the spectral energy distributions for the studied schemes. The �gure presents only semi-
Lagrangianmethods in the variables (ψ, w). The large-scale part of the spectrum is the same for all schemes;
the small-scale part has an underestimated energy level for di�erence schemes up to waves of 6h, and for
semi-Lagrangian schemes up to 12 h. It is interesting that the N scheme which do not posses invariants in the
asymptotics F = D = 0 lies most close to the spectrum of the reference HRM solution.

The energy level di�ers from scheme to scheme by less than 1%. In the introduction we have indicated
the possibility to transport errors over the spectrum into large scales and also the presence of aliasing errors.
We can conclude that even with the resolution of 360 × 360 they cannot change the equilibrium state.

5 Conclusions

In the present paper we studied the in�uence of the method of discretization of advective terms in equa-
tions of two-dimensional incompressible �uid on the statistically equilibrium distribution of energy over the
spectrum. The choice of schemes was �rst of all motivated by the development strategy of the climate model
developed in the INM RAS. The central problem of our study was a quantitative answer to the question on
the necessity of conservation laws for the enstrophy and energy in the asymptotic case of an ideal �uid in the
problem of simulation of a forced two-dimensional turbulence.

The main results of the paper are in the following conclusions.
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1. In experiments with small-scale forcing, when the forcing is on the characteristic scale of the computa-
tional grid, the role of ‘conservation laws’ is clearly revealed. The generation of enstrophy can lead to vio-
lation of the inverse cascade (INMOM, E) and its dissipation does not always lead to serious consequences
(INMCM) because in this case the dissipation begins to replace the numerical �lter. Non-conservation of
the integral vorticity leads to accumulation of the energy on largest scales (cubic, Hermite, spline). This
e�ect is especially pronounced for the Hermite scheme. In the reproduction of the inverse energy cascade
the requirement of energy conservation is irrelevant (INMCM, Z, N, CCS).

2. In experiments with a large-scale forcing when the forcing is well resolved on the grid, the level of the
energy spectrum in large and medium scales coincides with the level of the high resolution model, and
the di�erences are observed in small scales only where scheme e�ects appear and expands up to 6h in
�nite di�erence schemes and up to 12 h in semi-Lagrangian schemes.
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