
1. Introduction
Classical parameterizations of mesoscale eddies are based on the ideas of Reynolds averaging where temporal 
or ensemble averaging is used to diagnose the effect of eddies on the mean flow (Adcock & Marshall, 2000; 
Eden & Greatbatch, 2008; Gent & Mcwilliams, 1990; Greatbatch, 1998; Marshall & Adcroft, 2010; Marshall 
et al., 2012; Wardle & Marshall, 2000). These parameterizations are the most suitable for the coarse ocean models 
(around 1°) where the grid resolution is insufficient to directly simulate the transient mesoscale eddies, and thus 
the resolved flow can be seen as a temporary mean flow. We note that the Reynolds-averaging approach relies on 
the spatial scale separation between the mean flow and transient eddies which is often violated in realistic ocean 
flows (Grooms et al., 2013). Recently, the horizontal resolution of the ocean component of climate models has 
increased to eddy-permitting resolution (around 1/4°, Haarsma et al. (2016)). At this resolution, the scale separa-
tion does not hold even approximately because the ocean model directly simulates the largest transient mesoscale 
eddies. Consequently, such resolutions are often referred to as “gray zone” (Hewitt et al., 2020).

In the gray zone, the Large eddy simulation (LES) approach is preferable (Bachman et al., 2017; Fox-Kemper 
& Menemenlis, 2008; Graham & Ringler, 2013; Nadiga, 2008). In the LES framework, the effect of unresolved 
eddies is diagnosed with a spatial filter and referred to as a subgrid forcing (Zanna & Bolton, 2020). This forcing 
needs to be parameterized with a subgrid model. Recently many new parameterizations of mesoscale eddies 
were built based on the spatial filtering approach (Bachman et al., 2017; Bolton & Zanna, 2019; Frederiksen 
et  al., 2012; Guillaumin & Zanna, 2021; Khani & Dawson, 2023; Khani et  al., 2019; Mana & Zanna, 2014; 
Maulik & San, 2016, 2017b; Nadiga, 2008; Pearson et al., 2017; San et al., 2013; Zanna & Bolton, 2020).

Abstract Ocean models at intermediate resolution (1/4°), which partially resolve mesoscale eddies, 
can be seen as Large eddy simulations of the primitive equations, in which the effect of unresolved eddies 
must be parameterized. In this work, we propose new subgrid models that are consistent with the physics of 
two-dimensional flows. We analyze subgrid fluxes in barotropic decaying turbulence using Germano (1986, 
https://doi.org/10.1063/1.865568) decomposition. We show that Leonard and Cross stresses are responsible 
for the enstrophy dissipation, while the Reynolds stress is responsible for additional kinetic energy (KE) 
backscatter. We utilize these findings to propose a new model, consisting of three parts, that is compared to a 
baseline dynamic Smagorinsky model. The three-component model accurately simulates the spectral transfer of 
energy and enstrophy and improves the representation of KE spectrum, resolved KE and enstrophy decay in a 
posteriori experiments. The backscattering component of the new model (Reynolds stress) is implemented both 
in quasi-geostrophic and primitive equation ocean models and improves statistical characteristics, such as the 
vertical profile of eddy KE, meridional overturning circulation and cascades of kinetic and potential energy.

Plain Language Summary Ocean models at intermediate resolution contain missing physics term 
that accounts for the contribution of unresolved mesoscale eddies, which needs to be parameterized. Mesoscale 
eddies obey complex physics which should be accounted for when proposing a parameterization. Here we 
consider the interscale transfer of kinetic energy and enstrophy in a barotropic fluid and propose new subgrid 
models which capture this transfer. Our strategy is to split the subgrid contribution into three parts and propose 
a model for each term separately. This approach results in excellent a priori performance and improves online 
simulations. We demonstrate that our analysis of subgrid fluxes generalizes well across flow regimes: the new 
parameterization of energy redistribution improves barotropic, quasi-geostrophic and primitive equation ocean 
models.
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The LES approach has a long history of successful applications in three-dimensional (3D) turbulence (Sagaut, 2006) 
and comprises a multitude of methods. The most popular subgrid model is the Smagorinsky  (1963) model 
which relates the subgrid fluxes to the strain rate tensor. This model belongs to a class of so-called “functional 
models” (Sagaut, 2006). Functional models are designed to represent the mean effect of the eddies on the resolved 
flow. An alternative approach to subgrid modeling is “structural modeling” (Sagaut, 2006). Structural models 
utilize formal series expansion to approximate the subgrid forcing. Various approximations of subgrid forcing 
were proposed over the years: from Velocity gradient models (VGM, Clark et  al.  (1979)) to Scale-similarity 
models (SSM, Bardina et al., 1980; Bardino et al., 1983) and Approximate deconvolution models (ADM, Stolz 
et al. (2001)). A general approach to express the subgrid flux as an arbitrary function of velocity gradient tensor, 
which includes Smagorinsky and VGM models as special cases, was proposed by Pope (1975), and later extended 
by T. S. Lund and Novikov (1992), Wang and Bergstrom (2005); see also Anstey and Zanna (2017) in the context 
of the two-dimensional (2D) flows.

A linear combination of structural and functional models is referred to as a “mixed model” (Meneveau & 
Katz, 2000). Mixed models combine the best of both approaches: the structural part provides high correlation 
with the subgrid forcing and the functional part ensures the numerical stability of the simulations. Such mixed 
models can be naturally studied in the framework of Germano (1986) decomposition, where the subgrid stress 
is decomposed into Leonard, Cross and Reynolds stresses. Separate functional or structural models for each one 
of these stress terms are then proposed (Horiuti, 1997). We also mention another popular subgrid model in 3D 
LES: the “dynamic model” of Germano et al. (1991) which allows the estimation of the eddy viscosity coefficient 
directly from the resolved flow.

Quantifying the extent to which ocean models can benefit from the methods developed for 3D LES simulations 
is an open question. For example, subgrid parameterizations in 3D turbulence are mainly suited to simulate 
energy dissipation by the subgrid eddies (Meneveau & Katz, 2000). However, in the quasi-2D flows, the energy 
cascade has an inverse direction (Ferrari & Wunsch,  2009), and thus subgrid forcing energizes the flow on 
average. This effect is often referred to as a kinetic energy backscatter (KEB), see Thuburn et al. (2014), Jansen 
and Held (2014), Grooms et al.  (2015), Zanna et al.  (2017), Bachman et al.  (2018), Bachman (2019), Jansen 
et al. (2019), Juricke et al. (2020, 2023), Loose et al. (2023).

Dynamic models similar to Germano et al. (1991) have been proposed for the quasi-2D flows, see San (2014), 
Bachman et al.  (2017), Maulik and San (2017a, 2017c), Pawar et al.  (2020). These models simulate only the 
forward energy transfer, and consequently, their consistency with the physics of the quasi-2D flows is limited. 
On the contrary, various structural models have been shown to simulate the backward transfer of energy, see 
for example, Chen et al.  (2003, 2006), Bouchet  (2003), Nadiga  (2008), Mana and Zanna  (2014), Maulik and 
San (2017b), Anstey and Zanna (2017), Zanna and Bolton (2020), Khani and Dawson (2023). In this paper, we 
apply the approach of structural modeling to represent the backward energy transfer and propose new dynamic 
mixed models.

The existing dynamic models in the quasi-2D fluids often suffer from a build-up of energy near the grid scale 
(Bachman et al., 2017; Guan, Chattopadhyay, et al., 2022; Maulik & San, 2017a, 2017c). This indicates that 
numerical effects may lead to large errors even in physically meaningful parameterizations (Chow & Moin, 2003; 
Ghosal, 1996). In particular, Thuburn et al. (2014) shows that the subgrid kinetic energy (KE) transfer diagnosed 
from the high-resolution data significantly depends on the choice of the numerical scheme. In this paper, we 
reduce discretization errors by leveraging an explicit filtering approach (Bose et al., 2010; Carati et al., 2001; 
Gullbrand & Chow, 2003; T. Lund, 2003; Winckelmans et al., 2001). The explicit filtering approach treats a filter 
width and a grid step as independent parameters. The role of discretization errors can be then reduced by enlarg-
ing a filter-to-grid width ratio (FGR, Bose et al., 2010; Chow and Moin 2003; Ghosal 1996; Meyers et al., 2003; 
Sarwar et al., 2017).

The goal of our study is to propose new subgrid momentum closures of ocean mesoscale eddies which are 
consistent with the physics of the quasi-2D flow. We analyze the enstrophy and energy fluxes in barotropic 
decaying turbulence using Germano  (1986) decomposition. We show that the Leonard and Cross stresses 
describe the enstrophy dissipation, and Reynolds stress describes additional energy backscatter. Leonard stress 
can be computed directly. We propose a biharmonic Smagorinsky model for the Cross stress and a structural 
model for the Reynolds stress which is similar to Horiuti (1997). We estimate the Smagorinsky coefficient using 
the dynamic model of Germano et  al.  (1991). The energy flux produced by backscatter parameterization is 
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determined by considering the budget of subgrid KE (Jansen & Held, 2014) and estimation of subgrid KE (Khani 
& Dawson,  2023). The resulting three-component subgrid model accurately simulates energy and enstrophy 
fluxes and improves a posteriori experiments. Additionally, we show that the new backscatter model (Reynolds 
stress) improves quasi-geostrophic (QG) and primitive equation ocean models.

The study is structured as follows. In Section 2 we describe the governing equations. In Section 3 we analyze 
subgrid fluxes using Germano (1986) decomposition. In Section 4 we describe subgrid models. In Section 5 
subgrid models are evaluated in a posteriori experiments. Section 6 is devoted to the implementation to more 
realistic ocean models.

2. Governing Equations
In this section, we describe a Direct numerical simulation (DNS) of decaying barotropic turbulence and numer-
ical schemes.

The dimensionless barotropic vorticity equation in a doubly periodic domain of size 2π  ×  2π is (Guan, 
Chattopadhyay, et al., 2022; Maulik & San, 2017a, 2017c):

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(𝑢𝑢𝑗𝑗𝜕𝜕) =
1

𝑅𝑅𝑅𝑅
∇2𝜕𝜕𝜔 ∇2𝜓𝜓 = 𝜕𝜕𝜔 (1)

where x1 and x2 are Cartesian coordinates, 𝐴𝐴 ∇ =
(

𝜕𝜕𝑥𝑥1 , 𝜕𝜕𝑥𝑥2

)

 is the gradient operator. We assume summation over 
the repeated indices (j = 1, 2). The relative vorticity ω, streamfunction ψ and velocity vector components uj are 
related to each other as 𝐴𝐴 𝐴𝐴 = 𝜕𝜕𝑥𝑥1𝑢𝑢2 − 𝜕𝜕𝑥𝑥2𝑢𝑢1 and 𝐴𝐴 (𝑢𝑢1, 𝑢𝑢2) =

(

−𝜕𝜕𝑥𝑥2𝜓𝜓, 𝜕𝜕𝑥𝑥1𝜓𝜓
)

 . The Reynolds number is defined by 
dimensional RMS velocity 𝐴𝐴

(

�̃�𝑢rms

)

 , domain size 𝐴𝐴 2𝜋𝜋�̃�𝐿 and molecular viscosity 𝐴𝐴
(

𝜈𝜈
)

 as 𝐴𝐴 𝐴𝐴𝐴𝐴 = �̃�𝑢rms�̃�𝐿∕𝜈𝜈  .

The turbulence is initialized with a random divergence-free flow having the following KE density (per unit wave-
number k and unit area):

𝐸𝐸(𝑘𝑘) = 𝐴𝐴𝑘𝑘4 exp
(

−(𝑘𝑘∕𝑘𝑘𝑝𝑝)
2
)

, 𝐴𝐴 =
4𝑘𝑘−5

𝑝𝑝

3
√

𝜋𝜋
, (2)

where kp = 10, 𝐴𝐴 𝐴𝐴 =

√

𝐴𝐴2

1
+ 𝐴𝐴2

2
 and k1, k2 are components of wavevector. The normalization constant A is chosen 

to set the RMS velocity to one: 𝐴𝐴 𝐴𝐴rms =
(

2 ∫ 𝐸𝐸(𝑘𝑘)𝑑𝑑𝑘𝑘
)1∕2

= 1 . We integrate Equation 1 with initial perturbation of 
form (2) until the dimensionless time t = 10.

In Figure 1a we show decay of the KE spectrum in the DNS simulation for a combination of parameters that 
we use throughout the paper: resolution 4,096 2 and Re = 512,000. The spectrum is averaged over 50 reali-
zations of the initial random field. The chosen Reynolds number is very large, and further increase of Re or 
resolution does not influence significantly the band of scales resolved by the coarse LES models, see squares 
in Figure 1b.

Both DNS and LES models are discretized with the same second-order numerical scheme, which is a typical 
choice in realistic ocean models (Adcroft et al., 2019; Madec & the NEMO team, 2008). Specifically, we use the 
Arakawa scheme on the C grid conserving energy and enstrophy (Arakawa, 1997; Maulik & San, 2017c) and 
second-order approximation of the Poisson equation in Equation 1 which is solved in Fourier space. A three-stage 
Runge-Kutta (RK3) scheme (Skamarock et al., 2008) is used for time integration, with the time step Δt satisfying 
the linear stability criterion CFL = Δt maxj(|uj|)/Δg < 0.7, where Δg is the grid step.

3. A Priori Analysis of the Interaction With Subgrid Eddies
In this section, we diagnose the forcing produced by the subgrid eddies on the resolved flow. The analysis of 
subgrid forcing will guide the development of new subgrid models capable to simulate energy and enstrophy 
fluxes. We perform the analysis of the subgrid energy budget to propose a parameterization that is energetically 
consistent, see Jansen and Held  (2014). Additionally, we use Germano  (1986) decomposition to identify the 
components of subgrid forcing responsible for the energy and enstrophy fluxes.
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3.1. Filtered Equations

Following the LES approach (Sagaut,  2006), we introduce a spatial filter 𝐴𝐴 (⋅) decomposing the flow into the 
resolved part and unresolved or subgrid eddies. The filter is Gaussian and defined in Fourier space by the transfer 
function 𝐴𝐴 exp

(

−Δ
2

𝑘𝑘2∕24

)

 , where 𝐴𝐴 Δ —filter width. There are a few benefits of using the Gaussian filter. First, it 
has a finite second moment, and consequently, VGM and ADM approximations can be formally applied. These 
approximations are implicitly used in Sections 3.2 and 4.3. Second, the Gaussian filter is invertible on any finite 
range of scales (Langford & Moser, 1999). An invertible filter is important to apply an explicit filtering approach 
and to run computations with a large filter-to-grid width ratio (FGR, B1 in Appendix B).

By applying the filter to the governing Equations (1), we obtain an equation for the large-scale flow:

𝜕𝜕𝜔𝜔

𝜕𝜕𝜕𝜕
+

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

𝑢𝑢𝑗𝑗𝜔𝜔
)

=
1

𝑅𝑅𝑅𝑅
∇2𝜔𝜔 −

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(𝜎𝜎𝑗𝑗), ∇2𝜓𝜓 = 𝜔𝜔, (3)

which is unclosed and contains interaction with the subgrid eddies (subgrid flux):

𝜎𝜎𝑗𝑗 = 𝑢𝑢𝑗𝑗𝜔𝜔 − 𝑢𝑢𝑗𝑗𝜔𝜔𝜔 (4)

The spatial filter mimics the effect of a finite resolution and its width should be proportional to the grid step of 
the coarse LES model (Δg). The Gaussian filters related to the coarse resolutions of 128 2, 256 2, and 512 2 points 
are denoted as Δ128, Δ256, and Δ512, respectively. We set the filter-to-grid width ratio as 𝐴𝐴 FGR = Δ∕Δ𝑔𝑔 =

√

6 , and 
explain our choice in Section 5. Note that a priori analysis is performed on a DNS grid, and the grid step of the 
coarse model is used only to guide the choice of the filter width 𝐴𝐴 Δ .

3.2. Domain-Averaged Energy Exchange With Subgrid Eddies

Kraichnan  (1967), C. E. Leith  (1968), and Batchelor  (1969) developed a theory of the 2D forced-dissipative 
turbulence. Theory predicts the redistribution of enstrophy toward small scales and redistribution of energy 
toward large scales. Elements of this theory are observed in other quasi-2D fluids (Charney, 1971). In particular, 
in the 2D decaying turbulence, we observe the dissipation of enstrophy as a consequence of the direct enstrophy 
cascade (black line in Figure 2b) and approximate conservation of KE at a very high Reynolds number as a conse-
quence of the inverse energy cascade (black line in Figure 2a). The KE 𝐴𝐴

(

 =
1

2
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖

)

 is given by a sum of resolved 

KE 𝐴𝐴

(

𝐸𝐸 =
1

2
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖

)

 and subgrid KE 𝐴𝐴

(

𝑒𝑒 =
1

2

(

𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖
)

)

 . Total energy conservation implies that if subgrid KE is 

Figure 1. Kinetic energy spectrum in Direct numerical simulations: (a) time evolution at mesh 4,096 2 and Re = 512,000, and 
(b) additional combinations of mesh and Reynolds number at t = 10. Squares show the cutoff wavenumber (π/Δg, where Δg—
grid step) for the coarse LES models at resolutions 128 2, 256 2, and 512 2.
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decreasing, then the resolved KE must grow, see Figures 2a and 2c. It is a consequence of the redistribution of KE 
toward large scales, that is, inverse energy cascade. This process is governed by the energy flux 𝐴𝐴

(

Π𝐸𝐸 = 𝜎𝜎𝑗𝑗𝜕𝜕𝜓𝜓∕𝜕𝜕𝜕𝜕𝑗𝑗

)

 
between resolved and subgrid scales and must be accurately predicted by the subgrid model. An increase in the 
resolved KE corresponds to negative energy flux on average and is referred to as a backscatter. In this section, we 
propose an estimation of the negative energy flux.

Consider the budget of subgrid KE (Equation 7 in Jansen and Held (2014)):

𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑒𝑒⟩ = ⟨Π𝐸𝐸⟩ − ⟨𝐷𝐷⟩, (5)

where 〈⋅〉 is the domain-averaging, D ≥ 0 is the dissipation of subgrid KE. We have only molecular dissipation 
which is usually neglected (Jansen & Held, 2014; Jansen et al., 2019), that is, D = 0. The simplest way to predict 
the energy flux is to consider a statistically stationary case 𝐴𝐴

(

𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑒𝑒⟩ ≈ 0

)

 in Equation 5 which gives zero energy 
exchange between resolved and subgrid scales 〈ΠE〉 ≈ 0, see Jansen and Held (2014), Thuburn et al.  (2014). 
This approach is not suitable for the simulation of decaying turbulence, which is not stationary. A more accurate 
approach would include a numerical integration of the equation analogous to Equation 5 as proposed in Jansen 
et al. (2015). According to Equation 5, the decrease of subgrid KE (𝐴𝐴

𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑒𝑒⟩ < 0 , Figure 2c) should contribute to the 

negative subgrid energy flux 〈ΠE〉 < 0. That is, subgrid eddies energize the resolved eddies on average. Partee 
et al. (2022), Khani and Dawson (2023) proposed a new way to predict the energy of subgrid eddies: it can be 
estimated given the resolved flow as an alternative to the simulation of Equation 5.

Figure 2. (a) Kinetic energy and (b) enstrophy in Direct numerical simulation (black line) and filtered solutions (in colors), 
(c) subgrid energy (solid lines) and its estimation according to Equation 7 in dots, (d) the ratio of energy and enstrophy 
fluxes; the filter is Gaussian with different widths: Δ128 > Δ256 > Δ512.
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The gradient model of Khani and Dawson (2023) predicts the subgrid KE using only the resolved flow as:

𝑒𝑒 =
1

2
⋅

Δ
2

12

𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

, (6)

where we used a standard parameter of the gradient model for the Gaussian filter (1/12, Meneveau and Katz, 2000). 
In Appendix A we further show that estimation (Equation 6) is related to the resolved enstrophy 𝐴𝐴

(

𝑍𝑍 = 𝜔𝜔
2
∕2

)

 if 
consider spatially-averaged quantities:

⟨𝑒𝑒⟩ =
Δ

2

12
⟨𝑍𝑍⟩. (7)

In Figure 2c we show in black dots that this model (Equation 7) accurately predicts the diagnosed subgrid KE. It 
allows to express the spatially-averaged energy flux through the rate of change of the resolved enstrophy:

⟨Π𝐸𝐸⟩

Eq. (5)

=
𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑒𝑒⟩

Eq. (7)

=
Δ

2

12
⋅

𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑍𝑍⟩. (8)

This formula resembles a common approach to estimate the energy flux (〈ΠE〉 ≈ 0) for a statistically stationary 
case 𝐴𝐴

(

𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑍𝑍⟩ ≈ 0

)

 , and also predicts the negative energy flux (〈ΠE〉  <  0) in the decaying turbulence regime            

𝐴𝐴

(

𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑍𝑍⟩ < 0

)

 .

Specifically for the 2D decaying turbulence at a high Reynolds number, the resolved enstrophy can be lost only 
to the subgrid eddies, and thus 𝐴𝐴

𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑍𝑍⟩ = −⟨Π𝑍𝑍⟩ , where 𝐴𝐴 Π𝑍𝑍 = −𝜎𝜎𝑗𝑗𝜕𝜕𝜔𝜔∕𝜕𝜕𝜕𝜕𝑗𝑗 is the enstrophy flux from resolved to 

subgrid scales. Inserting this last expression into Equation 8, we obtain an interpretable relation between energy 
and enstrophy fluxes:

⟨Π𝐸𝐸⟩ = −
Δ

2

12
⟨Π𝑍𝑍⟩. (9)

In Figure 2d we show that the diagnosed energy and enstrophy fluxes are directed oppositely on average, and the 
presented estimate of the energy flux (Equation 9) is accurate after the initial adaptation of the turbulence (t > 1). 
The formula (Equation 9) will be used to estimate a free parameter of a new backscatter parameterization. Note 
that Equation 8 can potentially be applied in more complicated cases of non-stationary forced turbulence but we 
leave this investigation for future research.

3.3. Transfer Spectra for Germano Decomposition

The subgrid energy and enstrophy transfer spectra are given by, respectively (Guan, Subel, et al., 2022):

��(�) =
∑

|�|∈[�,�+1)
ℝ
((

���

���

)∗

�

(

�
)

�

)

, (10)

�� (�) =
∑

|�|∈[�,�+1)
ℝ
(

−
(

���

���

)∗

�

(

�
)

�

)

, (11)

and (⋅)k denotes the 2D Fourier transform, (⋅)* is complex conjugate, 𝐴𝐴 ℝ is real part. These transfer spectra are 
connected to the energy and enstrophy fluxes (ΠE, ΠZ) as follows:

∫
𝑇𝑇𝐸𝐸(𝑘𝑘)d𝑘𝑘 = −⟨Π𝐸𝐸⟩,∫

𝑇𝑇𝑍𝑍 (𝑘𝑘)d𝑘𝑘 = −⟨Π𝑍𝑍⟩. (12)

Another simple relation is observed for barotropic flows (ω = ∇ 2ψ) and given by TZ(k) = TE(k)k 2. Although we 
could analyze only one of the transfer spectra (TZ(k) or TE(k)), we note that factor k 2 significantly emphasizes 
small scales over large scales, and consequently, the most fair analysis can be made by analysis of both transfer 
spectra.
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In Figures  3b and  3c we show the transfer spectra in black line. The subgrid energy and enstrophy transfer 
contains a small-scale dissipative region (TE(k) < 0, TZ(k) < 0) and a large-scale backscatter region (TE(k) > 0, 
TZ(k) > 0), but the relative contribution of the energy backscatter is higher. We show examples of simple eddy 
viscosity models (dashed and dot-dashed lines in Figures 3b and 3c). These models are purely dissipative and 
cannot capture the complex structure of subgrid fluxes.

Many subgrid models in 3D turbulence were inspired by decomposing the subgrid stress into three parts: Leonard, 
Cross and Reynolds stresses (Leonard, 1975). For example, velocity gradient model (Clark et al., 1979) approxi-
mates Leonard and Cross stresses. The scale-similarity model (Bardina et al., 1980; Bardino et al., 1983) approx-
imates Cross and Reynolds stresses. These two examples correspond to the decomposition where Leonard  and 
Cross stresses are Galilean-non-invariant (Leonard,  1975). To retain invariance properties, we must propose 
a subgrid model for at least two terms simultaneously. The advantage of later suggested Germano  (1986) 
decomposition is that every stress is Galilean-invariant and can be approximated separately. An example of a 
three-component model in 3D turbulence following this methodology is provided in Horiuti (1997).

The Germano (1986) decomposition of subgrid vorticity flux is given by Nadiga (2008):

𝜎𝜎𝑗𝑗 = 𝑢𝑢𝑗𝑗𝜔𝜔 − 𝑢𝑢𝑗𝑗𝜔𝜔
⏟⏞⏞⏟⏞⏞⏟

Leonard

+ 𝑢𝑢𝑗𝑗𝜔𝜔′ + 𝑢𝑢′
𝑗𝑗
𝜔𝜔 − 𝑢𝑢𝑗𝑗𝜔𝜔′ − 𝑢𝑢′

𝑗𝑗
𝜔𝜔

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cross

+ 𝑢𝑢′
𝑗𝑗
𝜔𝜔′ − 𝑢𝑢′

𝑗𝑗
𝜔𝜔′

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Reynolds

,
 (13)

where primed quantities denote subgrid eddies, 𝐴𝐴 𝐴𝐴′ = 𝐴𝐴 − 𝐴𝐴 and 𝐴𝐴 𝐴𝐴′
𝑗𝑗
= 𝐴𝐴𝑗𝑗 − 𝐴𝐴𝑗𝑗 . The Reynolds stress represents the 

effect on the resolved flow from eddy-eddy interactions, Cross stress represents the effect of eddy-resolved flow 
interactions. Finally, the Leonard stress contains only the resolved fields and can be directly computed given 𝐴𝐴 𝑢𝑢𝑗𝑗 
and 𝐴𝐴 𝜔𝜔 .

In Figure 3 we show the spectral content for each component in the Germano decomposition. The enstrophy 
dissipation is mostly represented by Leonard and Cross stresses, see Figure 3b. Also, the enstrophy dissipation by 
the Cross stress can be approximated by the biharmonic viscosity model 𝐴𝐴

(

∇4𝜔𝜔
)

 , see the dashed line in Figure 3b. 
These findings will be used to propose a mixed dissipative model of subgrid forcing. The KEB is influenced by 
Leonard, Cross and Reynolds stresses, but only the Reynolds stress almost purely represents the positive energy 
transfer (Figure 3c), and this property will be used to propose a new backscatter model. The contribution of 
Germano decomposition components to the energy and enstrophy transfer is similar for the other filter widths.

We briefly mention how the choice of the filter influences the spectral properties of the Germano decomposition. 
We found that Box and Gaussian filters produce similar transfer spectra. Using the cut-off filter considerably 
changes the small-scale enstrophy dissipation produced by the Cross term: it becomes highly scale-selective 

Figure 3. A priori analysis of the subgrid forcing with Germano decomposition (Equation 13) for the filter with medium width Δ256, t = 2. (a) Power spectrum of 
subgrid forcing; (b) enstrophy and (c) energy transfer spectra. The filter scale is defined as 𝐴𝐴 𝐴𝐴𝑓𝑓 = 𝜋𝜋∕Δ ; 𝐴𝐴 ∇2𝜔𝜔 and 𝐴𝐴 ∇4𝜔𝜔 are dissipation spectra produced by laplacian and 
biharmonic eddy viscosity models.
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(Frederiksen & Davies, 1997). The energy transfer spectrum for the Reynolds stress is roughly similar for all three 
filters (Box, Gaussian and cut-off). Finally, the Leonard stress for the cut-off filter equals zero in the resolved 
scales defined as wavenumbers below the Nyquist frequency of the cut-off filter.

4. Subgrid Models
In this section, we describe the dynamic Smagorinsky model (DSM) and propose new dissipative and backscat-
tering models by applying the results of a priori analysis.

4.1. Dynamic Smagorinsky Model (DSM)

The DSM is a popular baseline subgrid model in the quasi-2D turbulence research (Frezat et al., 2022; Guan, 
Chattopadhyay, et al., 2022; Maulik & San, 2017a; Pawar et al., 2020). The Smagorinsky eddy viscosity model 
is given by:

𝜎𝜎𝑗𝑗 ≈ 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷
𝑗𝑗 = −𝐶𝐶2

𝐷𝐷
Δ

2

|𝐷𝐷|
𝜕𝜕𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

, (14)

where CS is the Smagorinsky coefficient. Filtered strain-rate tensor is 𝐴𝐴 𝑆𝑆𝑖𝑖𝑖𝑖 =
1

2

(

𝜕𝜕𝑥𝑥𝑖𝑖 𝑢𝑢𝑖𝑖 + 𝜕𝜕𝑥𝑥𝑖𝑖𝑢𝑢𝑖𝑖
)

 and its modulus 

𝐴𝐴 |𝑆𝑆| =

√

2𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖  . In the dynamic model of Germano et al. (1991), a free parameter (CS) is estimated from the 
resolved turbulent flux 𝐴𝐴 𝐴𝐴𝑗𝑗 = 𝑢𝑢𝑗𝑗𝜔𝜔 − �̂�𝑢𝑗𝑗 �̂�𝜔 , where a new test filter 𝐴𝐴 (̂⋅) of width 𝐴𝐴 Δ̂ is introduced. The resolved turbulent 
flux can be decomposed as follows (Germano identity):

𝑙𝑙𝑗𝑗 = Σ𝑗𝑗 − 𝜎𝜎𝑗𝑗, (15)

where 𝐴𝐴 Σ𝑗𝑗 = 𝑢𝑢𝑗𝑗𝜔𝜔 − �̂�𝑢𝑗𝑗 �̂�𝜔 is the subgrid flux with respect to the combined filter 𝐴𝐴
̂
(⋅) . Substituting Smagorinsky 

model (Equation 14) to the Germano identity (Equation 15) and applying the least squares procedure of Ghosal 
et al. (1995), we determine the Smagorinsky coefficient:

𝐶𝐶2

𝑆𝑆
=

⟨𝑙𝑙𝑗𝑗𝛼𝛼𝑗𝑗⟩

⟨𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩
, (16)

where 〈⋅〉 is the spatial averaging and

𝛼𝛼𝑗𝑗 = −
̂
Δ

2

|

̂
𝑆𝑆|

𝜕𝜕�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

+
̂

Δ
2

|𝑆𝑆|
𝜕𝜕𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

. (17)

The derivation of Equations 16 and 17 is provided in C1 in Appendix  C. In B2 in Appendix B, we show 
that in the 2D turbulence, the dynamic modeling of the subgrid vorticity flux has advantages compared to 
the dynamic modeling of the subgrid stress which is a common approach in the 3D turbulence (Germano 
et al., 1991).

We set the width of the Gaussian base 𝐴𝐴 (⋅) and test 𝐴𝐴 (̂⋅) filters equal 𝐴𝐴

(

Δ̂ = Δ

)

 similarly to Brun and Friedrich (2001) 

instead of a popular choice 𝐴𝐴 Δ̂ > Δ (Germano, 1992). It is possible because we avoid an often-used simplifying 

assumption 𝐴𝐴
̂
Δ ≈ Δ̂ (Brun & Friedrich, 2001; San, 2014). Instead, the width of the combination of Gaussian filters 

is computed directly as 𝐴𝐴
̂
Δ =

√

Δ
2

+ Δ̂2 =
√

2 Δ (Brun & Friedrich, 2001; Germano, 1992). As long as the filter 

width ratio satisfies 𝐴𝐴
̂
Δ∕Δ > 1 , there is no division by zero in the denominator of Equation 16 and dynamic proce-

dure can be formally applied (Brun & Friedrich, 2001). We found our approach 𝐴𝐴

(

Δ̂ = Δ

)

 more convenient. In 
particular, it allows us to reduce the number of free parameters and use as wide base and test filters as possible 
having only a three-point stencil. Note also that the only parameter of the base filter which is used in the DSM 
model is the filter width 𝐴𝐴 Δ . We treat this parameter independently from the grid step 𝐴𝐴

(

Δ ≠ Δ𝑔𝑔

)

 and thus we 
follow the explicit filtering approach (Carati et al., 2001). Subgrid models presented in the following sections will 
use the base filter 𝐴𝐴 (⋅) directly in scale-similarity and Reynolds stress parts.
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The spectral properties of the DSM model (Equations 14 and 16) in a priori analysis are shown in Figure 4. The 
DSM is a purely dissipative model, and it predicts the enstrophy dissipation of the subgrid forcing reasonably 
well (Figure 4b). However, it introduces the dissipation of KE on large scales, where the subgrid forcing has a 
significant positive transfer, that is, backscatter (Figure 4c). Thus we conclude that DSM model is inconsistent 
with the physics of the quasi-2D fluids, and it needs to be modified.

4.2. Dynamic Mixed Model (DMM)

We first leverage the approach of mixed models (Meneveau & Katz, 2000) to model the dissipation of enstro-
phy. The classical mixed model combines Leonard stress (also known as the scale-similarity model, SSM, 
Bardina et  al.,  1980) with the laplacian Smagorinsky eddy viscosity model (Guan, Subel, et  al.,  2022). 
However, we have shown in a priori analysis that the enstrophy dissipation is accurately represented by the 
combination of the Leonard stress with biharmonic eddy viscosity. We utilize this finding in the mixed model 
as follows:

𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷
𝑗𝑗 = 𝑢𝑢𝑗𝑗𝜔𝜔 − 𝑢𝑢𝑗𝑗𝜔𝜔 + 𝐶𝐶4

𝑆𝑆
Δ

4

|𝑆𝑆|
𝜕𝜕
(

∇2𝜔𝜔
)

𝜕𝜕𝜕𝜕𝑗𝑗

, (18)

and dynamic procedure to determine the Smagorinsky coefficient:

𝐶𝐶4

𝑆𝑆
=

⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝛼𝛼𝑗𝑗⟩

⟨𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩
, (19)

where

𝛼𝛼𝑗𝑗 =
̂
Δ

4

|

̂
𝑆𝑆|

𝜕𝜕∇2�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

−
̂

Δ
4

|𝑆𝑆|
𝜕𝜕∇2𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

andℎ𝑗𝑗 =
̂
�̂�𝑢𝑗𝑗�̂�𝜔 −

̂
�̂�𝑢𝑗𝑗

̂
�̂�𝜔 −

(

̂
𝑢𝑢𝑗𝑗𝜔𝜔 −

̂
𝑢𝑢𝑗𝑗𝜔𝜔

)

. (20)

The derivation of Equations 19 and 20 is provided in C2 in Appendix C; see also Vreman et al. (1994) for expla-
nation of hj.

The a priori analysis with the DMM model (Equations  18 and  19) shows an improvement in the enstrophy 
dissipation spectrum, power spectrum and KE backscattering in large scales, see Figure 4. However, the positive 
energy transfer on large scales by the DMM model is clearly underestimated, and it needs to be further modified 
to account for the missing backscatter.

Figure 4. A priori analysis of subgrid models: DSM is dynamic Smagorinsky model, Dynamic Mixed Model (DMM) comprises Leonard stress, DMM + Reynolds 
includes an additional backscatter parameterization (Reynolds stress). Medium filter width Δ256 and t = 2. Subgrid models are computed given the filtered Direct 
numerical simulation (DNS) data on the grid of DNS. Dashed line shows contribution of the molecular viscosity at Re = 512,000.
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4.3. DMM With Backscattering Part (DMM + Reynolds)

We have shown in a priori analysis that the Reynolds stress is a promising candidate for an additional backscatter 
model: it has a small contribution to the enstrophy budget and almost purely represents a positive transfer of KE. 
The Reynolds stress cannot be computed given the filtered fields 𝐴𝐴 𝜔𝜔 and 𝐴𝐴 𝑢𝑢𝑗𝑗 , but can be approximated as follows:

𝑢𝑢′
𝑗𝑗
𝜔𝜔′ − 𝑢𝑢′

𝑗𝑗
𝜔𝜔′ ≈ 𝜎𝜎𝐾𝐾𝐾𝐾𝐾𝐾

𝑗𝑗 = 𝑢𝑢′
𝑗𝑗
𝜔𝜔′ − 𝑢𝑢′

𝑗𝑗
𝜔𝜔′, (21)

where 𝐴𝐴 𝑢𝑢′
𝑗𝑗
= 𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗  and 𝐴𝐴 𝜔𝜔′ = 𝜔𝜔 − 𝜔𝜔 , see Horiuti (1997) for details. The modification to DMM model accounting 

for an additional backscatter then reads:

𝜎𝜎𝑗𝑗 = 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷
𝑗𝑗 + 𝐶𝐶𝑅𝑅𝜎𝜎

𝐾𝐾𝐾𝐾𝐾𝐾
𝑗𝑗 , (22)

where 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷
𝑗𝑗

 and its parameter CS are set in the previous section. The energy balance Equation  9 reads as 

𝐴𝐴 ⟨𝜎𝜎𝑗𝑗𝜕𝜕𝜓𝜓∕𝜕𝜕𝜕𝜕𝑗𝑗⟩ =
Δ
2

12
⟨𝜎𝜎𝑗𝑗𝜕𝜕𝜔𝜔∕𝜕𝜕𝜕𝜕𝑗𝑗⟩ , and allows to choose a free parameter CR as follows:

𝐶𝐶𝑅𝑅 = −

⟨

𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷
𝑗𝑗

𝛽𝛽𝑗𝑗
⟩

⟨

𝜎𝜎𝐾𝐾𝐾𝐾𝐾𝐾
𝑗𝑗

𝛽𝛽𝑗𝑗
⟩ , (23)

where

𝛽𝛽𝑗𝑗 =
𝜕𝜕𝜓𝜓

𝜕𝜕𝜕𝜕𝑗𝑗

−
Δ

2

12

𝜕𝜕𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

. (24)

The proposed DMM  +  Reynolds model (Equations  22 and  23) demonstrates excellent a priori results: it 
is same good as the DMM model in reproducing the power spectrum and enstrophy dissipation (Figures  4a 
and 4b), but additionally improves KEB on large scales (Figure 4c). The transfer spectra for each component 
of DMM + Reynolds subgrid model in comparison to components of Germano decomposition are shown in 
Figure 5. The scale-similarity part 𝐴𝐴

(

𝑢𝑢𝑗𝑗𝜔𝜔 − 𝑢𝑢𝑗𝑗𝜔𝜔

)

 is exactly the Leonard stress by construction. The biharmonic 

Smagorinsky model 𝐴𝐴

(

𝐶𝐶4

𝑆𝑆
Δ

4

|𝑆𝑆|
𝜕𝜕(∇2𝜔𝜔)
𝜕𝜕𝜕𝜕𝑗𝑗

)

 captures only the enstrophy dissipation part of the Cross stress. The 

Reynolds stress model 𝐴𝐴

(

𝐶𝐶𝑅𝑅

(

𝑢𝑢′
𝑗𝑗
𝜔𝜔′ − 𝑢𝑢′

𝑗𝑗
𝜔𝜔′

))

 captures the energy backscatter of both Reynolds and Cross stress. 

Figure 5. A priori analysis of DMM + Reynolds model. Solid lines show components of the subgrid forcing, and circles show components of the subgrid model. 
Medium filter width Δ256 and t = 2.
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So we emphasize that although the Germano decomposition inspired the 
development of the three-component model, the component wise representa-
tion of the Cross and Reynolds stresses is less accurate than the representa-
tion of their joint contribution.

The proposed modifications to the dynamic Smagorinsky model (DMM 
and DMM  +  Reynolds) significantly improve the Mean squared error 
(MSE) in the prediction of subgrid forcing, see Figure  6. We emphasize 
that the improvement due to including the parameterization of Reynolds 
stress increases as the filter gets wider, which is expectable because subgrid 
and Reynolds stresses should be equal for a very large filter width (Jakhar 
et al., 2023; Sullivan et al., 2003).

4.4. Numerical Discretization of Subgrid Models

We discretize the subgrid models (DSM, DMM, and DMM + Reynolds) with 
the second-order numerical schemes. The spatial Gaussian filter is imple-
mented in Fourier space if 𝐴𝐴 𝐴𝐴 = Δ∕Δ𝑔𝑔 >

√

6 and using second-order approxi-
mation otherwise (Sagaut & Grohens, 1999):

𝜙𝜙 =
1

24
𝜖𝜖2(𝜙𝜙𝑗𝑗+1 + 𝜙𝜙𝑗𝑗−1) +

(

1 −
𝜖𝜖2

12

)

𝜙𝜙𝑗𝑗, (25)

where j is an index of a grid node in one direction. The 2D discrete filter 
is given by a sequential application of one-dimensional filters (Equa-
tion  25) along x1 and x2 directions, that is, filter product, see Sagaut and 

Grohens (1999). A combination of filters 𝐴𝐴
̂
(⋅) is given by a sequential application of the base and test filters. The 

only tunable parameter remains in the coarse LES models: filter-to-grid width ratio 𝐴𝐴 Δ∕Δ𝑔𝑔 , and we discuss it in 
the next section.

5. A Posteriori Experiments
In this section, we implement the proposed subgrid models into the LES Equation 3, and perform a posteriori 
experiments. The goal for LES models is to reproduce filtered DNS (fDNS) data on a coarse grid.

5.1. Comparison of Subgrid Models

As a reference solution, we use DNS at resolution 4,096 2 and Re = 512,000. In order to demonstrate that the 
proposed subgrid models do not generate numerical noise, we integrate LES Equation 3 on a coarse grid with-
out molecular viscosity 𝐴𝐴

(

1

𝑅𝑅𝑅𝑅
∇2𝜔𝜔 = 0

)

 . Note that results with molecular viscosity are almost identical. We also 
provide simulations with unparameterized model (σj = 0), where the only dissipation is related to the time inte-
gration scheme (RK3). Neglecting molecular viscosity is a common practice in realistic ocean models, and in our 
case it is justified by its low impact on scales of the coarse LES models, see Figures 1 and 4.

Every experiment is computed for an ensemble of 50 realizations. Numerical integration starts at t = 1, and 
the initial condition is prepared from DNS data as follows. We first apply a Gaussian filter of width 𝐴𝐴 Δ to DNS 
fields, and then perform spectral truncation of wavenumbers |ki| > π/Δg, where Δg is the grid step of a coarse LES 
model. We run a posteriori experiments for three resolutions (128 2, 256 2, 512 2) at a fixed FGR: 𝐴𝐴 Δ∕Δ𝑔𝑔 =

√

6 . 
This parameter was chosen based on the sensitivity studies and corresponds to a tradeoff between the strength of 
the discretization errors and the number of directly resolved turbulent eddies, see B1 in Appendix B.

All the proposed dynamic models (DSM, DMM, DMM + Reynolds) produce numerically stable solutions with-
out build-up of energy spectrum near the grid scale for a range of resolutions, see upper row in Figure 7. The 
most evident difference between the subgrid models is observed in reproducing the KE level (Figure 7, middle 
row). The DSM model falsely predicts energy decay, the DMM model is almost energy conservative, and only the 
DMM + Reynolds model is able to predict energy growth in accordance with fDNS data. The most significant 

Figure 6. Mean squared error (MSE) in a priori analysis of subgrid models on 
Direct numerical simulation grid, averaged over t ∈ [2, 10]. Error at a single 
time is: 𝐴𝐴 MSE =

⟨

(

𝜕𝜕𝑥𝑥𝑗𝑗 𝜎𝜎𝑗𝑗 − 𝜕𝜕𝑥𝑥𝑗𝑗 𝜎𝜎
𝑚𝑚
𝑗𝑗

)2
⟩

∕

⟨

(

𝜕𝜕𝑥𝑥𝑗𝑗 𝜎𝜎𝑗𝑗

)2
⟩

 , where σj is the subgrid flux 
and 𝐴𝐴 𝐴𝐴𝑚𝑚

𝑗𝑗
 is a subgrid model.
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effect of the Reynolds stress on the energy level is observed for coarser resolutions in accordance with a priori 
analysis. The energetic effect can be studied further by considering PDFs of local energy and enstrophy fluxes 
(Figure 8, middle and lower rows). Mixed models (DMM and DMM + Reynolds) predict local fluxes of either 
sign contrary to the DSM model which is purely dissipative. At coarser resolutions, the DMM + Reynolds model 
predicts heavier tails on both sides of the distributions, that is, has stronger dissipation and backscatter of energy 
and enstrophy compared to the DMM model.

The mixed models (DMM and DMM  +  Reynolds) are better than the baseline (DSM) in many characteris-
tics. They improve the KE spectrum shape near the filter scale kf (Figure 7, upper row), they demonstrate less 

Figure 7. A posteriori experiments with subgrid models integrated with zero viscosity 𝐴𝐴

(

1

𝑅𝑅𝑅𝑅
∇2𝜔𝜔 = 0

)

 ; unparameterized simulation (σj = 0) shows the dissipation 
introduced by the time integration scheme. Upper row: spectrum of kinetic energy (KE) at t = 10, middle row: KE, bottom row: enstrophy. Direct numerical simulation 
at resolution 4,096 2 and Re = 512,000 is used as a reference solution.
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dissipation of the enstrophy (Figure 7, lower row), and improve tails of vorticity PDF (Figure 8, upper row). We 
emphasize however that while improvement of DMM model over DSM model is evident in all characteristics, the 
improvement of DMM + Reynolds model compared to DMM model is observed only in the total energy level and 

Figure 8. Upper row: PDF of vorticity at final time t = 10, middle row: PDF of enstrophy flux 𝐴𝐴 Π𝑍𝑍 = −𝜎𝜎𝑗𝑗
𝜕𝜕𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗
 at t = 2, where ΠZ < 0 corresponds to backscatter, lower 

row: PDF of energy flux 𝐴𝐴 Π𝐸𝐸 = 𝜎𝜎𝑗𝑗
𝜕𝜕𝜓𝜓

𝜕𝜕𝜕𝜕𝑗𝑗
 at t = 2, where ΠE < 0 corresponds to backscatter. Fluxes ΠZ and ΠE are computed in a posteriori experiments.
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local energy/enstrophy fluxes. Additional energy in DMM + Reynolds model at the coarsest resolution simply 
accumulates on the largest scales instead of energizing small coherent eddies. Although somewhat unimportant 
in decaying turbulence, we emphasize that accurate prediction of KE is essential in complex baroclinic flows and 
directly influences many other statistics (Jansen & Held, 2014).

5.2. Scale Invariance

We observe that all subgrid models have similar defects at the coarsest resolution: they overly dissipate enstrophy, 
they have diminished tails in vorticity PDF and they have reduced KE density in the middle scales (Figures 7a, 
7g, and 8a). In this case, the filter width corresponds to not a self-similar part of the energy spectrum (Figure 7a), 
and consequently, the filter width is roughly equal to the size of coherent eddies.

Dynamic subgrid models are built on the assumption that the Smagorinsky coefficient is scale-invariant, that 
is, it is independent of the filter width. However, this assumption violates whenever we deal with a break of 
self-similarity of the energy spectrum. For this case, a scale-dependent dynamic model was proposed (Meneveau 
& Lund, 1997; Porté-Agel et al., 2000). Likewise, the scale invariance of the Smagorinsky model can be violated 
for the quasi-2D flows exhibiting the enstrophy cascade, and for this case C. Leith (1996) proposed a new eddy 
viscosity model (Bachman et al., 2017; Fox-Kemper & Menemenlis, 2008). A break of the scale invariance of 
the Smagorinsky model can potentially lead to an inaccurate prediction of the Smagorinsky coefficient by the 
dynamic procedure of Germano et al. (1991) and consequent overly enstrophy dissipation.

In Figure 9a, we show in blue line the Smagorinsky coefficient (CS) diagnosed from the DNS data by the least 
squares fit of the subgrid flux σj:

𝐶𝐶2

𝑆𝑆
=

⟨𝜎𝜎𝑗𝑗𝛼𝛼𝑗𝑗⟩

⟨𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩
, 𝛼𝛼𝑗𝑗 = −Δ

2

|𝑆𝑆|
𝜕𝜕𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

. (26)

The subgrid model DSM applied to filtered DNS data (Equation 16) accurately predicts the diagnosed parame-
ter CS, see Cross(×) in Figure 9a. However, once we evaluate the subgrid model a posteriori, the Smagorinsky 
coefficient abruptly increases (red line in Figure 9a) and it results in the excessive dissipation of enstrophy. We 

Figure 9. Left column: comparison of the predicted and diagnosed Smagorinsky coefficient (CS). Blue line: CS diagnosed from Direct numerical simulation (DNS) 
data. Cross(×): prediction of CS by a dynamic model on filtered DNS data. Red line: prediction by a dynamic model in a posteriori experiment. Two rightmost columns: 
vorticity PDF and energy spectrum in a posteriori experiments with corresponding CS. Upper row: dynamic Smagorinsky model, lower row: Dynamic Mixed Model. 
All experiments have Re = 512,000 and the widest filter width Δ128.
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conclude that the scale invariance of the eddy viscosity model has a minor effect on the accuracy of the dynamic 
procedure, but the main difficulty is in the lack of consistency between a priori and a posteriori performance of 
the same subgrid model (Ross et al., 2023). In Figures 9b and 9c we compare the Smagorinsky model with the 
coefficient diagnosed from DNS data (blue line) and estimated dynamically (red line). The blue line indicates a 
substantial amount of numerical noise: vorticity PDF becomes close to Gaussian and energy accumulates near 
the grid scale with middle scales remaining unchanged. Thus we conclude that the dynamic procedure predicts a 
coefficient that is optimal for a posteriori performance. Similar conclusions can be made about the DMM model, 
which is shown in the lower row of Figure 9. Analogous analysis for the DMM + Reynolds model involves two 
coefficients and for brevity is given in Appendix D.

5.3. Dynamic Two-Parameter DMM + Reynolds Model

The DMM  +  Reynolds model accurately predicts the total energy level, and it is a consequence of the 
energetically-consistent estimation of the free coefficient CR. In particular, our estimation procedure (Equation 8) 
allows us to guarantee that the energy contribution of subgrid parameterization is bounded at any time moment 
T as follows:

∫

�

0
−⟨Π�⟩�� ≤

Δ
2

12
⟨�⟩

|

|

|

|�=0
. (27)

The Equation 8 can potentially be used in more complex flows, however, it still contains physical assumption 
(dissipation of subgrid KE is zero) and it is non-local in time (derivative d/dt should be somehow approxi-
mated). In Appendix D, we show that both parameters CS and CR can be estimated simultaneously using the 
two-parameter dynamic procedure. Although this approach cannot guarantee bounded growth of KE, a posteriori 
experiments show a remarkable resemblance with the original DMM + Reynolds model proposed in Section 4.3.

6. Reynolds Stress in QG and Primitive Equation Ocean Models
The most unexpected outcome of our study of the subgrid fluxes in the 2D decaying turbulence was the role of the 
Reynolds stress tensor in energizing the flow on large scales. The role of Reynolds stress in 3D turbulence is differ-
ent: it dissipates energy in spectral space (Horiuti, 1997; Schilling & Zhou, 2002; Thiry & Winckelmans, 2016). 
The backscattering property of the Reynolds stress cannot be guaranteed theoretically and depends on the under-
lying flow. Note that the energy backscatter is essential in baroclinic ocean models and responsible for the correct 
reproducing of the KE and many other statistical properties (Jansen & Held, 2014; Juricke et al., 2019). Thus, 
the overall performance of the three-component model depends on the efficiency of the Reynolds stress model to 
simulate the backscatter in realistic ocean flows.

In this section, we implement only a part of the DMM + Reynolds model (Reynolds stress parameterization) into 
ocean models based on the QG and primitive equations and show that it can reproduce the energy backscatter. For 
simplicity, we choose the coefficient CR manually. Implementation of the full three-component model is deferred 
for future studies.

6.1. Two-Layer QG Model

We use an idealized QG ocean model (pyqg, Abernathey et al., 2022). Our configuration is called “eddy” and 
described in Ross et al. (2023), P. Perezhogin et al. (2023). The model has two fluid layers in a doubly-periodic 
domain. It is forced by the prescribed vertical shear of a zonal flow and loses its energy by frictional dissipation 
in the bottom layer. The spatial discretization is accomplished with the pseudo-spectral method. The dissipation 
of enstrophy and numerical noise is provided by the highly scale-selective exponential filter which multiplies the 
Fourier coefficients of the potential vorticity (PV) after every time step by the following function: 𝐴𝐴 𝐴𝐴−23.6(Δ𝑥𝑥)

4(𝜅𝜅−𝜅𝜅𝑐𝑐) 
in range of wavenumbers κ > κc = 0.65π/Δx. All numerical experiments presented in this section include the 
described dissipation mechanism.

We extend the Reynolds model (Equation 21) to simulate the subgrid flux of PV as follows:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ⋯ − 𝐶𝐶𝑅𝑅

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

𝑢𝑢′
𝑗𝑗
𝜕𝜕′ − 𝑢𝑢′

𝑗𝑗
𝜕𝜕′
)

, (28)
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where q and uj are the resolved PV and velocity on a coarse grid; 𝐴𝐴 𝐴𝐴′ = 𝐴𝐴 − 𝐴𝐴 and 𝐴𝐴 𝐴𝐴′
𝑗𝑗
= 𝐴𝐴𝑗𝑗 − 𝐴𝐴𝑗𝑗  . Note that we 

omitted one filtering operation in Equation 28 for clarity of numerical implementation (see Section 1.3 in Layton 
and Rebholz (2012)). The filter 𝐴𝐴 (⋅) is Gaussian with 𝐴𝐴 Δ∕Δ𝑔𝑔 = 2 . The parameterization is applied layerwise with 
the same CR which controls the strength of energy injection. We manually selected CR = 7 by matching the KE 
spectrum on large scales for high-resolution and coarse parameterized models.

We choose the parameterization of Jansen and Held (2014), Jansen et al. (2015) as a baseline subgrid model. 
Implementation details are provided in Ross et al. (2023), and we choose the optimal parameters of the parame-
terization from this paper. JansenHeld subgrid model consists of two parts: small-scale dissipation parameterized 
by biharmonic viscosity and larger-scale backscatter parameterized by laplacian operator with negative viscosity.

In Figure 10 we compare coarse models on a grid 64 2 (grid step 15.6 km) to the high-resolution simulation (256 2, 
3.9 km) after reaching statistical equilibrium: we average the results between 5 and 20 years of the simulation 
for an ensemble of 10 members. The energy cycle comprises two cascades (Salmon, 1978; Vallis, 2017). The 
available potential energy (APE) is redistributed toward smaller scales following the direct cascade (Figure 10c), 
where it is converted to the KE near the Rossby deformation radius. The KE is redistributed toward larger scales 
following the inverse cascade (Figure 10b). The coarse model fails to simulate the energy transfer, and its KE 
spectral density is smaller compared to the high-resolution model (Figure 10a). Both backscatter parameteriza-
tions (Reynolds and JansenHeld) simulate the energy injection in the large scales (Figure 10d) and amplify the 
resolved (i.e., unparameterized) cascades of KE and APE (Figures 10b and 10c), which results in a significant 
improvement in the reproducing of the KE spectrum.

Figure 10. Experiments in two-layer quasi-geostrophic idealized ocean model. High-resolution simulation (256 2) is 
compared to models at coarse resolution, where 64 2 denotes unparameterized simulation, JansenHeld denotes negative 
viscosity backscatter, and Reynolds is given in Equation 28. (a) kinetic energy (KE) spectrum, (b) resolved transfer of KE, (c) 
resolved transfer of available potential energy, (d) transfer of total energy by subgrid parameterizations.
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In Figure 10d we show the energy transfer produced by subgrid models in a posteriori experiments in comparison 
to the subgrid forcing diagnosed a priori, see P. Perezhogin et al. (2023). The negative viscosity parameteriza-
tion (JansenHeld) is suitable for the Sharp filter on large scales (see Kraichnan (1976) for explanation), and the 
Reynolds parameterization is closer to the subgrid forcing diagnosed with the Gaussian filter. Note that we show 
the joint contribution of laplacian backscatter and biharmonic dissipation for JansenHeld model, but the contri-
bution of Reynolds parameterization is shown alone. The laplacian part of JansenHeld model returns energy on 
all scales up to the grid scale, and consequently, the biharmonic part is required to shift the backscattering region 
toward larger scales. On the contrary, the Reynolds stress model returns energy on scales larger than the defor-
mation radius and consequently can be used without biharmonic dissipation (in this QG model). Note that in both 
cases there is an additional drain of energy due to the exponential filter, see pink line in Figure 10d. We conclude 
that JansenHeld backscatter model is more scale selective and can energize the flow in smaller scales compared 
to the Reynolds backscatter model. This difference can be seen as an advantage or disadvantage depending on  the 
application. For example, in realistic ocean simulations, the laplacian backscatter model is often smoothed to 
return energy on larger scales (Juricke et al., 2019). The following section shows a case where a scale-selective 
backscatter may be preferable.

6.2. Primitive Equation Ocean Model NEMO

We use the primitive equation ocean model NEMO (Madec & the NEMO team, 2008) in the Double Gyre config-
uration (Lévy et al., 2010). The model contains 30 vertical layers in a domain with a flat bottom and vertical 
walls. The circulation is forced by the prescribed wind stress and buoyancy fluxes on the surface; the equation 
of state is linear and comprises temperature and salinity. The reference model has grid step 1/9° (11.7 km) with 
coarse models having grid steps 1/3° (35.3 km) and 1/4° (26.5 km). Every simulation starts from the snapshot 
of 1° model which was spun up for 1,000 years. Then every model is integrated for 120 further years with 20 
last years used for the collection of statistics. An analog of Jansen and Held (2014) backscatter parameterization 
in NEMO ocean model was implemented by the author (P. Perezhogin, 2019; P. A. Perezhogin, 2020). We use 
the optimal parameters of the parameterization from these papers. Note that the biharmonic viscosity represents 
the only small-scale enstrophy dissipation mechanism in the three types of coarse ocean models differing in the 
backscattering part of the parameterization. Biharmonic viscosity has a constant coefficient equal to (m 4  s −1 
units): 10 12, 5 ⋅ 10 11, and 5 ⋅ 10 10 for 1/3°, 1/4°, and 1/9° models, respectively.

We extend the Reynolds parameterization (Equation 21) to simulate the subgrid momentum flux as follows:

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
= ⋯ −

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

𝐶𝐶𝑅𝑅

(

𝜕𝜕′
𝑖𝑖
𝜕𝜕′
𝑗𝑗
− 𝜕𝜕′

𝑖𝑖
𝜕𝜕′
𝑗𝑗

))

, 𝑖𝑖, 𝑗𝑗 ∈ {1, 2}, (29)

where ui is the resolved horizontal velocity on a coarse grid and 𝐴𝐴 𝐴𝐴′
𝑖𝑖
= 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑖𝑖 . The parameterization is applied 

layerwise with the same CR. We observed that if CR is tuned to improve the KE, the wider filter 𝐴𝐴 (⋅) allows choos-
ing the lower parameter CR. Consequently, we define the filter 𝐴𝐴 (⋅) as two iterations of the three-point filter (Equa-
tion 25) with maximum allowable 𝐴𝐴 𝐴𝐴 =

√

6 . The three-point filter imposes physical boundary conditions on the 
velocity: no-normal flow and free slip. In preliminary experiments, we observed that attenuating the Reynolds 
parameterization near the boundaries qualitatively improves the results. Note that the JansenHeld parameteriza-
tion appeared to work fine without such attenuation. We introduce the attenuation of Reynolds parameterization 
smoothly in the vicinity of the wall (l ≤ L) as follows: CR → CR ⋅ (1 − cos(πl/L))/2, where l is the distance to the 
wall and L is the length scale of attenuation. After some tuning, we set L as four grid steps. The only remaining 
free parameter CR = 30 was simply tuned to obtain the best Root Mean Squared Errors (RMSE) in the vertical 
profile of eddy kinetic energy (EKE) at resolution 1/4°. We note that CR was increased substantially compared 
to QG case because the small-scale dissipation was changed to less scale selective, and consequently, more 
energy needs to be returned back. The chosen CR is only slightly larger than in the barotropic turbulence case 
(Appendix D).

The Reynolds model works as a backscatter parameterization and energizes the flow on a coarse grid. Similarly 
to the JansenHeld subgrid model, the EKE can be increased near the surface and the bottom, see Figure 11a. Both 
backscatter parameterizations were tuned for 1/4° resolution, and it is clear that the energy level at 1/3° resolu-
tion is a bit lower. We hope that one of the considered procedures for the a posteriori estimation of parameter CR 
in the Reynolds backscatter model can improve generalization in future studies. The spatial spectrum indicates 
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an increase in EKE density for Reynolds parameterization in many resolved scales with the JansenHeld model 
reproducing EKE spectrum slightly better in the middle scales, see Figure 11b.

An improvement in the representation of the resolved eddy activity results in an improvement in several other 
metrics. In Figure 12 we show 20-year mean sea surface temperature (SST) for the reference simulation and 
errors for coarse models. The largest error for the unparameterized model is concentrated near the western 
boundary (Figure 12a) and is explained by the misrepresentation of the western boundary current (WBC, Lévy 
et al. (2010)). Both backscatter parameterizations improve the mean SST near the western boundary (Figures 12b 
and 12c), but the Reynolds model is also better in the northern region (Figure 12c). The RMSE in surface fields 
for temperature and salinity indicates lower errors for the Reynolds model, see Table 1. In Figure 13 we show 
20-year mean meridional overturning circulation (MOC) streamfunction (Cabanes et al., 2008). Both backscat-
ter parameterizations improve the streamfunction near the latitude of WBC separation (∼30°N), but Reynolds 
parameterization is also better in improving the northern circulation cell (∼45°N). Additionally, we show that 
both backscatter parameterizations significantly improve the resolved eddy meridional heat flux near the latitude 
∼30°N (see Figure 13).

7. Conclusions
In this work, we perform careful a priori analysis of energy and enstrophy fluxes in the 2D decaying turbulence 
and develop mixed subgrid parameterizations based on previous studies (Germano, 1986; Germano et al., 1991; 
Horiuti, 1997; Vreman et al., 1994), but in the context of the 2D fluids. We evaluate these parameterizations in a 
posteriori experiments for a range of resolutions and implement the Reynolds part of the new parameterization to 
the QG and primitive equation ocean models.

Our main contributions and findings are as follows:

•  We consider the budget of subgrid KE (Jansen & Held,  2014) and estimation of subgrid KE (Khani & 
Dawson, 2023) to predict the domain-averaged KE flux produced by subgrid eddies. It extends an ad hoc 

approach (〈ΠE〉 ≈ 0) suitable for statistically stationary flows to nonstationary flows via 𝐴𝐴 ⟨Π𝐸𝐸⟩ =
Δ
2

12
⋅

𝑑𝑑

𝑑𝑑𝑑𝑑
⟨𝑍𝑍⟩ . 

Note that testing this new formula requires further research in baroclinic models.

Figure 11. Experiments in NEMO ocean model in Double Gyre configuration. (a) 20-year mean eddy kinetic energy 
(EKE) averaged laterally over the whole domain. (b) Spatial spectrum of surface EKE (half the power spectrum of velocity 
deviations from 1-year mean flow).
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•  The components of Germano decomposition play a special role in forming energy and enstrophy subgrid 
fluxes: Leonard and Cross stresses are responsible for the enstrophy dissipation; all three stresses (Leonard, 
Cross, Reynolds) contribute to the KEB in large scales, but only the Reynolds stress produces almost 
positive-definite KE transfer.

•  We start from the DSM in a priori analysis and show by gradual changes 
how to build a subgrid model which correctly simulates energy and 
enstrophy fluxes. In particular, we simulate the enstrophy dissipation 
by the Leonard stress and the biharmonic Smagorinsky model which 
approximates the Cross stress; an approximation to the Reynolds stress 
is used to simulate a missing backscatter of KE.

•  The new subgrid parameterization (DMM + Reynolds) is numerically 
stable at zero molecular viscosity. It improves the reproduction of the 
KE spectrum, PDF of vorticity and decay of enstrophy. The new method 
to estimate the subgrid energy flux allows to reproduce the growth of the 
resolved KE at a very high Reynolds number.

•  We additionally showed that instead of energetically-consistent tuning 
of the backscattering coefficient (CR), we can estimate CR using a fully 
dynamic approach (Appendix D) which does not include any physical 
assumptions except of scale similarity.

Figure 12. Experiments in NEMO ocean model. (d) 20-year mean sea surface temperature (SST) in the high-resolution 
model; (a–c) errors in SST for coarse models. The Reynolds-parameterized model in panel (c) is given in Equation 29.

SSH (m) SST (°C) SSS (psu)

1/4° 0.108 0.647 0.128

1/4°, JansenHeld 0.054 (−49.7%) 0.383 (−40.7%) 0.11 (−13.9%)

1/4°, Reynolds 0.058 (−46.0%) 0.327 (−49.5%) 0.088 (−31.4%)

1/3° 0.121 0.943 0.178

1/3°, JansenHeld 0.092 (−24.3%) 0.643 (−31.8%) 0.174 (−2.6%)

1/3°, Reynolds 0.099 (−18.3%) 0.596 (−36.8%) 0.123 (−31.2%)

Note. The error is computed w.r.t. 1/9° model.

Table 1 
The Root Mean Squared Errors (RMSE) in 20-Year Mean Sea Surface 
Height (SSH), Sea Surface Temperature (SST) and Sea Surface Salinity 
(SSS)
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•  The role of the Reynolds stress model as a KEB parameterization holds in two additional ocean models: 
pseudospectral QG model and finite volume primitive equation model NEMO. Similarly to the Jansen and 
Held (2014) backscatter parameterization, the Reynolds model allows to energize the flow and improves vari-
ous statistical properties, such as KE spectrum, the vertical profile of EKE, interscale KE and APE transfers, 
the resolved meridional eddy heat flux, MOC and errors in surface fields, such as SST, Sea Surface Salinity 
and Sea Surface Hight.

The important result of our analysis in the decaying turbulence problem is the absence of free physical 
parameters in the proposed subgrid parameterizations. The only parameter that was tuned a posteriori is the 
filter-to-grid width ratio (FGR) which was shown to control the relative importance of the numerical discreti-
zation errors. We expect that the DMM model can be extended to more complex ocean models by considering 
analogous formulation in momentum equations. Implementation of the full DMM + Reynolds model would 
require proposing a procedure for determining the CR coefficient. In this paper, we considered three approaches: 
estimation based on the energetic principles and dynamic two-parameter model in decaying turbulence, and 
simple tuning in QG and NEMO ocean models. Importantly, CR can be easily tuned manually, and in our exper-
iments with the NEMO ocean model, we showed it can be chosen uniquely for all depths and spatial locations.

We would like to explain the difference between DMM + Reynolds model and the subgrid model proposed for 
3D turbulence in Horiuti (1997). The differences are rather minor: we approximate the vorticity flux instead of 
the momentum flux and use the biharmonic Smagorinsky model instead of the laplacian one. As we show in 
Appendix D, a two-parameter dynamic procedure similar to Horiuti (1997) can be applied for the 2D flows as 
well. The role of the Reynolds stress tensor differs in 2D and 3D fluids: the Reynolds stress energizes the flow 

Figure 13. Experiments in NEMO ocean model. In contours: meridional overturning circulation (MOC) streamfunction 
computed as 𝐴𝐴 Ψ𝑀𝑀𝑀𝑀𝑀𝑀 = ∫

𝑧𝑧

−𝐻𝐻
∫

east

west
⟨𝑉𝑉 ⟩𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 in Sverdrups, where 〈V〉t−20-year mean meridional velocity. In color: the resolved 

meridional eddy heat flux, defined as zonal integral of ρ0Cp(〈TV〉t − 〈T〉t〈V〉t), see P. A. Perezhogin (2020).
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in the 2D case but dissipates energy in the 3D case (Schilling & Zhou, 2002). It is promising that the parameteri-
zation of the Reynolds stress does not rely on the physical assumptions and can be applied in both cases. Finally, 
we would like to note that a probable application of the model may be the simulation of 3D turbulent flows with 
strong quasi-2D structure.

Additional future studies related to Germano decomposition can allow us to gain new insights on subgrid 
modeling. For example, we have shown that the role of the Reynolds stress model increases as the filter gets 
wider, as it is seen in the a priori MSE metric, simulation of resolved KE a posteriori, and better results in the 
northern region in NEMO ocean model, where Rossby deformation radius falls within subgrid scales. Conse-
quently, new subgrid parameterizations for coarse models can be based on the prediction of the Reynolds stress 
instead of the full subgrid forcing, see for example, in the context of machine learning (Bolton & Zanna, 2019; 
Zanna & Bolton, 2020). We demonstrated that the most severe discrepancy between predicted and diagnosed 
Smagorinsky coefficient comes not from the lack of scale invariance, but from a difference between a priori 
and a posteriori performance of the same dynamic model. We suggest that the crudest approximation in our 
DMM + Reynolds model comes from the representation of the Cross stress. New accurate models of the Cross 
stress could potentially improve the consistency of a priori and a posteriori experiments, and gain a posteriori 
performance.

Appendix A: Relation Between Subgrid Energy and Resolved Enstrophy
We decompose velocity gradient tensor 𝐴𝐴

𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗
 into symmetric 𝐴𝐴 𝑆𝑆𝑖𝑖𝑖𝑖 and antisymmetric 𝐴𝐴 Ω𝑖𝑖𝑖𝑖 parts, and consequently 

𝐴𝐴
𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗
= 𝑆𝑆𝑖𝑖𝑗𝑗𝑆𝑆𝑖𝑖𝑗𝑗 + Ω𝑖𝑖𝑗𝑗Ω𝑖𝑖𝑗𝑗 = |𝑆𝑆|2∕2 + 𝜔𝜔

2
∕2 (Borue & Orszag, 1998). Up to the boundary conditions, the spatial 

averaging 〈⋅〉 can be used to show that 𝐴𝐴 ⟨|𝑆𝑆|2⟩ = ⟨𝜔𝜔
2
⟩ (Buxton et al., 2011). Finally, the estimation of subgrid KE 

(Equation 6) is related to the resolved enstrophy 𝐴𝐴

(

𝑍𝑍 = 𝜔𝜔
2
∕2

)

 in spatially-averaged sense:

⟨𝑒𝑒⟩ =
1

2
⋅

Δ
2

12
⟨

𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

⟩ =
Δ

2

12
⟨𝑍𝑍⟩. (A1)

Appendix B: Approaches to Reduce the Generation of Numerical Noise Near the 
Grid Scale
The dynamic models in the quasi-2D turbulence often struggle to predict a sufficient enstrophy dissipation and 
lead to the formation of the numerical noise near the grid scale; see examples in Bachman et al. (2017), Maulik 
and San (2017c), Guan, Chattopadhyay, et al. (2022). In this Appendix, we consider two approaches to reduce 
the numerical noise generation.

B1. Eliminating Discretization Errors With the Explicit Filtering Approach

The discretization errors may be an important source of discrepancies between a priori and a posteriori perfor-
mance. In this work, we apply the explicit filtering approach to reduce the role of numerical errors (Gullbrand & 
Chow, 2003). The main idea of explicit filtering consists in considering the grid step of the coarse model Δg and 
filter width 𝐴𝐴 Δ as independent parameters. Fixing the filter width 𝐴𝐴 Δ and enlarging the 𝐴𝐴 FGR = Δ∕Δ𝑔𝑔 , it is possible 
to eliminate the discretization errors from the LES Equation 3.

In Figure B1 we show the energy spectrum in a posteriori experiments with the DMM model at a fixed filter width 
and enlarging FGR (and corresponding grid resolution). At low resolution (FGR = 2) we observe a build-up of 
energy density near the grid scale, and at larger FGRs coarse models converge to the filtered solution. There is 
a tradeoff between the strength of discretization errors and the number of directly simulated degrees of freedom 
(Bose et al., 2010; T. Lund, 1997, 2003; Sarwar et al., 2017). We use as small FGR as possible to better utilize the 
grid resolution, but large enough to reduce the role of discretization errors. An optimal FGR for the DMM model 
is 𝐴𝐴 FGR =

√

6 which we use in a posteriori experiments for all three subgrid models (DMM, DMM + Reynolds, 
DSM).
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B2. Additional Formulations of the DSM Model

The DSM model proposed in Section 4 approximates the subgrid vorticity flux σj. The corresponding Germano 
identity reads as 𝐴𝐴 𝐴𝐴𝑗𝑗 = Σ𝑗𝑗 − 𝜎𝜎𝑗𝑗 . There are many variations of the DSM model in the 2D turbulence research. For 
example, the Germano identity for the subgrid stress can be used (Germano et al., 1991; Guan, Chattopadhyay, 
et al., 2022; Pawar et al., 2020):

𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑖𝑖 , (B1)

where 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 is the subgrid stress, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 − �̂�𝑢𝑖𝑖�̂�𝑢𝑖𝑖 is the resolved turbulent stress and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 − �̂�𝑢𝑖𝑖�̂�𝑢𝑖𝑖 

is the subgrid stress with respect to the combined filter 𝐴𝐴
̂
(⋅) . Another option is to apply the Germano identity for 

the divergence of the subgrid vorticity flux (Maulik & San, 2016, 2017a, 2017c):

𝑙𝑙 = Σ − 𝜎𝜎𝜎 (B2)

where 𝐴𝐴 𝐴𝐴 = −div(𝐴𝐴𝑗𝑗) ≡ −
𝜕𝜕𝐴𝐴𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗
 , Σ = −div(Σj), σ = −div(σj). The formulation of the Smagorinsky model can also 

be different. For example, Pawar et al. (2020) use 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 ≈ 𝐴𝐴
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑖𝑖
≡ −2𝐶𝐶2

𝑆𝑆
Δ

2

|𝑆𝑆|𝑆𝑆𝑖𝑖𝑖𝑖 which is not equivalent to our 

Smagorinsky model (Equation 14) because 𝐴𝐴 |𝑆𝑆| varies spatially.

In this section, we show how the formulations of the Germano identity and the Smagorinsky model influence 
the performance of the DSM model. We consider the Smagorinsky model of the subgrid stress 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 ≈ 𝐴𝐴

Smag

𝑖𝑖𝑖𝑖
 . The 

corresponding dynamic estimation of the Smagorinsky coefficient is given by:

𝐶𝐶2

𝑆𝑆
=

⟨𝐿𝐿𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖⟩

⟨𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖⟩

, (B3)

where 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = −2
̂
Δ

2

|

̂
𝑆𝑆|

̂
𝑆𝑆𝑖𝑖𝑖𝑖 + 2

̂
Δ

2

|𝑆𝑆|𝑆𝑆𝑖𝑖𝑖𝑖 . Our LES Equation 3 needs the subgrid vorticity flux which we compute 
as follows: 𝐴𝐴 𝐴𝐴𝑗𝑗 = curl(𝜏𝜏𝑖𝑖𝑗𝑗) ≡

(

𝜕𝜕𝑥𝑥1𝜏𝜏12 − 𝜕𝜕𝑥𝑥2𝜏𝜏11, 𝜕𝜕𝑥𝑥1𝜏𝜏22 − 𝜕𝜕𝑥𝑥2𝜏𝜏12
)

 , see Anstey and Zanna (2017). We introduce two 
additional procedures to estimate the CS in 𝐴𝐴 𝐴𝐴

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑖𝑖
 dynamically via considering the Germano identities for the 

subgrid vorticity flux (Equation 15) and for its divergence (Equation B2), respectively:

Figure B1. Eliminating discretization errors in a posteriori experiments by enlarging the 𝐴𝐴 FGR = Δ∕Δ𝑔𝑔 parameter, where 

filter width is fixed 𝐴𝐴

(

Δ = Δ512

)

 and grid step is varying; t = 10. Experiments with FGR equal to 2, 𝐴𝐴
√

6 and 𝐴𝐴 2

√

6 have 
resolutions 418 2, 512 2, 10,24 2, respectively.
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Figure B2. A posteriori experiments with the dynamic Smagorinsky model having different formulations of the 
Smagorinsky model and the Germano identity. Upper row: kinetic energy spectrum. Lower row: the Smagorinsky coefficient; 
the black line shows the CS diagnosed a priori (Equation 26).

𝐶𝐶2
𝑆𝑆
=

⟨𝑙𝑙𝑗𝑗𝑚𝑚𝑗𝑗⟩

⟨𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗⟩

, where𝑚𝑚𝑗𝑗 = curl(𝑀𝑀𝑖𝑖𝑗𝑗), (B4)

𝐶𝐶2

𝑆𝑆
=

⟨𝑙𝑙𝑙𝑙⟩

⟨𝑙𝑙𝑙𝑙⟩
, where𝑙𝑙 = −div(𝑙𝑙𝑗𝑗). (B5)

In Figure B2, we compare the three described above DSM models (Equations B3–B5) to the DSM model introduced 
in Section 4.1. The DSM model approximating the subgrid stress (Equation B3) predominantly predicts a negative 
Smagorinsky coefficient which we clip to zero (Figure B2, lower row). This model is almost identical to the unpa-
rameterized simulation (σj = 0). The predicted 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 is negative because in the decaying 2D turbulence the subgrid 

stress energizes the resolved eddies and thus it is correlated with the strain-rate tensor 𝐴𝐴

(

−⟨𝜏𝜏𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖⟩ < 0

)

 which is only 
possible when the 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 is negative. Practical computations with this model are only possible when the local clipping 

of LijMij prior to the spatial averaging is used (Guan, Chattopadhyay, et al., 2022; Pawar et al., 2020). The dynamic 
model for the subgrid vorticity flux (Equation B4) helps to predict the positive Smagorinsky coefficient although the 
build-up of the numerical noise near the grid scale remains (Figure B2, upper row). Finally, the dynamic model for 
the divergence of the subgrid vorticity flux (Equation B5) leads to a further increase in the CS and a reduction of the 
numerical noise near the grid scale. This model is the closest to the DSM proposed in Section 4.1.
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The accurate predictions given by the DSM model from Section 4.1 can be explained by the combination of two 
factors: the pointwise alignment of this model with the enstrophy dissipation direction 𝐴𝐴

(

−𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷
𝑗𝑗

𝜕𝜕𝜔𝜔∕𝜕𝜕𝜕𝜕𝑗𝑗 ≥ 0
)

 and 
the dynamic modeling of the subgrid vorticity flux. Both factors lead to the extraction of information about the 
enstrophy dissipation on the test filter scale:

𝑙𝑙𝑗𝑗𝛼𝛼𝑗𝑗 ∼ Σ𝑗𝑗

(

−
𝜕𝜕�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

)

∼ Π𝑍𝑍. (B6)

Appendix C: Derivation of the Dynamic Models
C1. DSM Model

We first need to define the Smagorinsky model on filter scales 𝐴𝐴 Δ and 𝐴𝐴
̂
Δ , respectively:

𝜎𝜎𝑗𝑗 = −𝐶𝐶2

𝑆𝑆
Δ

2

|𝑆𝑆|
𝜕𝜕𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

, (C1)

Σ𝑗𝑗 = −𝐶𝐶2

𝑆𝑆

̂
Δ

2

|

̂
𝑆𝑆|

𝜕𝜕�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

, (C2)

where we assumed that coefficient CS is equal for both filters and spatially-independent. Then the Germano 
identity (Equation 15) reads as:

𝑙𝑙𝑗𝑗 = Σ𝑗𝑗 − 𝜎𝜎𝑗𝑗 = 𝐶𝐶2

𝑆𝑆

(

−
̂
Δ

2

|

̂
𝑆𝑆|

𝜕𝜕�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

+
̂

Δ
2

|𝑆𝑆|
𝜕𝜕𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

)

= 𝐶𝐶2

𝑆𝑆
𝛼𝛼𝑗𝑗 . (C3)

In the least squares approach of Ghosal et  al.  (1995), we define the local error 𝐴𝐴 𝐴𝐴𝑗𝑗 = 𝑙𝑙𝑗𝑗 − 𝐶𝐶2

𝑆𝑆
𝛼𝛼𝑗𝑗 and the 

domain-averaged error:

⟨𝑒𝑒2𝑗𝑗 ⟩ = ⟨𝑙𝑙𝑗𝑗 𝑙𝑙𝑗𝑗⟩ + 𝐶𝐶4

𝑆𝑆
⟨𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩ − 2𝐶𝐶2

𝑆𝑆
⟨𝑙𝑙𝑗𝑗𝛼𝛼𝑗𝑗⟩. (C4)

Its minimum as a function of 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 is given by:

𝐶𝐶2

𝑆𝑆
=

⟨𝑙𝑙𝑗𝑗𝛼𝛼𝑗𝑗⟩

⟨𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩
. (C5)

C2. DMM Model

The mixed subgrid model on filter scales 𝐴𝐴 Δ and 𝐴𝐴
̂
Δ , respectively:

𝜎𝜎𝑗𝑗 = 𝑢𝑢𝑗𝑗𝜔𝜔 − 𝑢𝑢𝑗𝑗𝜔𝜔 + 𝐶𝐶4

𝑆𝑆
Δ

4

|𝑆𝑆|
𝜕𝜕∇2𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

, (C6)

Σ𝑗𝑗 =
̂
�̂�𝑢𝑗𝑗�̂�𝜔 −

̂
�̂�𝑢𝑗𝑗

̂
�̂�𝜔 + 𝐶𝐶4

𝑆𝑆

̂
Δ

4

|

̂
𝑆𝑆|

𝜕𝜕∇2�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

. (C7)

The Germano identity (Equation 15) after grouping terms:

𝑙𝑙𝑗𝑗 = Σ𝑗𝑗 − 𝜎𝜎𝑗𝑗 =

̂
�̂�𝑢𝑗𝑗�̂�𝜔 −

̂
�̂�𝑢𝑗𝑗

̂
�̂�𝜔 −

(

̂
𝑢𝑢𝑗𝑗𝜔𝜔 −

̂
𝑢𝑢𝑗𝑗𝜔𝜔

)

+ 𝐶𝐶4

𝑆𝑆

(

̂
Δ

4

|

̂
𝑆𝑆|

𝜕𝜕∇2�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

−
̂

Δ
4

|𝑆𝑆|
𝜕𝜕∇2𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

)

=

ℎ𝑗𝑗 + 𝐶𝐶4

𝑆𝑆
𝛼𝛼𝑗𝑗 .

 (C8)
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Similarly to the DSM model, the minimization of the spatially-averaged square of error 𝐴𝐴 𝐴𝐴𝑗𝑗 = (𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗) − 𝐶𝐶4

𝑆𝑆
𝛼𝛼𝑗𝑗 

results in:

𝐶𝐶4

𝑆𝑆
=

⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝛼𝛼𝑗𝑗⟩

⟨𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩
. (C9)

Appendix D: Two-Parameter Dynamic Procedure for DMM + Reynolds Model
In this section, we first give a classical two-parameter dynamic estimation of the coefficients CS and CR in 
DMM + Reynolds model (Horiuti, 1997; Salvetti & Banerjee, 1995; Wang & Bergstrom, 2005; Yuan et al., 2020), 
and then apply regularization proposed by Morinishi and Vasilyev (2001).

D1. Classical Two-Parameter Dynamic Model

The DMM + Reynolds model on filter scales 𝐴𝐴 Δ and 𝐴𝐴
̂
Δ reads as, respectively:

𝜎𝜎𝑗𝑗 = 𝑢𝑢𝑗𝑗𝜔𝜔 − 𝑢𝑢𝑗𝑗𝜔𝜔 + 𝐶𝐶4

𝑆𝑆
Δ

4

|𝑆𝑆|
𝜕𝜕∇2𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝐶𝐶𝑅𝑅

(

𝑢𝑢′
𝑗𝑗
𝜔𝜔′ − 𝑢𝑢′

𝑗𝑗
𝜔𝜔′

)

, (D1)

Σ𝑗𝑗 =
̂
�̂�𝑢𝑗𝑗�̂�𝜔 −

̂
�̂�𝑢𝑗𝑗

̂
�̂�𝜔 + 𝐶𝐶4

𝑆𝑆

̂
Δ

4

|

̂
𝑆𝑆|

𝜕𝜕∇2�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝐶𝐶𝑅𝑅

⎛

⎜

⎜

⎝

̂
̂
𝑢𝑢′
𝑗𝑗

̂
𝜔𝜔′ −

̂
̂
𝑢𝑢′
𝑗𝑗

̂
̂
𝜔𝜔′

⎞

⎟

⎟

⎠

, (D2)

where for any ϕ we have: 𝐴𝐴 𝜙𝜙′ = 𝜙𝜙 − 𝜙𝜙 and 𝐴𝐴
̂
𝜙𝜙′ =

̂
𝜙𝜙 −

̂
̂
𝜙𝜙 . The Germano identity (Equation 15) for this model after 

grouping terms:

𝑙𝑙𝑗𝑗 = Σ𝑗𝑗 − 𝜎𝜎𝑗𝑗 = ℎ𝑗𝑗 + 𝐶𝐶4

𝑆𝑆
𝛼𝛼𝑗𝑗 + 𝐶𝐶𝑅𝑅𝑏𝑏𝑗𝑗, (D3)

where as before 𝐴𝐴 𝐴𝐴𝑗𝑗 = 𝑢𝑢𝑗𝑗𝜔𝜔 − �̂�𝑢𝑗𝑗 �̂�𝜔 , 𝐴𝐴 𝐴𝑗𝑗 =
̂
�̂�𝑢𝑗𝑗�̂�𝜔 −

̂
�̂�𝑢𝑗𝑗

̂
�̂�𝜔 −

(

̂
𝑢𝑢𝑗𝑗𝜔𝜔 −

̂
𝑢𝑢𝑗𝑗𝜔𝜔

)

 , 𝐴𝐴 𝐴𝐴𝑗𝑗 =
̂
Δ

4

|

̂
𝑆𝑆|

𝜕𝜕∇2�̂�𝜔

𝜕𝜕𝜕𝜕𝑗𝑗
−

̂
Δ

4

|𝑆𝑆|
𝜕𝜕∇2𝜔𝜔

𝜕𝜕𝜕𝜕𝑗𝑗
 and

𝑏𝑏𝑗𝑗 =

̂
̂
𝑢𝑢′
𝑗𝑗

̂
𝜔𝜔′ −

̂
̂
𝑢𝑢′
𝑗𝑗

̂
̂
𝜔𝜔′ −

(

̂
𝑢𝑢′
𝑗𝑗
𝜔𝜔′ −

̂
𝑢𝑢′
𝑗𝑗
𝜔𝜔′

)

. (D4)

We define the local error in Germano identity 𝐴𝐴 𝐴𝐴𝑗𝑗 = (𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗) − 𝐶𝐶𝑅𝑅𝑏𝑏𝑗𝑗 − 𝐶𝐶4

𝑆𝑆
𝛼𝛼𝑗𝑗 and consider its minimization:

𝜕𝜕

𝜕𝜕𝜕𝜕𝑅𝑅

⟨𝑒𝑒𝑗𝑗𝑒𝑒𝑗𝑗⟩ = 0 → 𝜕𝜕𝑅𝑅⟨𝑏𝑏𝑗𝑗𝑏𝑏𝑗𝑗⟩ + 𝜕𝜕4

𝑆𝑆
⟨𝛼𝛼𝑗𝑗𝑏𝑏𝑗𝑗⟩ = ⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝑏𝑏𝑗𝑗⟩, (D5)

𝜕𝜕

𝜕𝜕𝜕𝜕4

𝑆𝑆

⟨𝑒𝑒𝑗𝑗𝑒𝑒𝑗𝑗⟩ = 0 → 𝜕𝜕𝑅𝑅⟨𝑏𝑏𝑗𝑗𝛼𝛼𝑗𝑗⟩ + 𝜕𝜕4

𝑆𝑆
⟨𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩ = ⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝛼𝛼𝑗𝑗⟩. (D6)

The solution to the above equations predicts both parameters CS and CR:

𝐶𝐶𝑅𝑅 =
⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝑏𝑏𝑗𝑗⟩⟨𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩ − ⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝛼𝛼𝑗𝑗⟩⟨𝛼𝛼𝑗𝑗𝑏𝑏𝑗𝑗⟩

⟨

𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩⟨𝑏𝑏𝑗𝑗𝑏𝑏𝑗𝑗⟩ − ⟨𝛼𝛼𝑗𝑗𝑏𝑏𝑗𝑗⟩
2

, (D7)

𝐶𝐶4

𝑆𝑆
=

⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝛼𝛼𝑗𝑗⟩⟨𝑏𝑏𝑗𝑗𝑏𝑏𝑗𝑗⟩ − ⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝑏𝑏𝑗𝑗⟩⟨𝛼𝛼𝑗𝑗𝑏𝑏𝑗𝑗⟩
⟨

𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗⟩⟨𝑏𝑏𝑗𝑗𝑏𝑏𝑗𝑗⟩ − ⟨𝛼𝛼𝑗𝑗𝑏𝑏𝑗𝑗⟩
2

. (D8)
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D2. Regularization

Morinishi and Vasilyev (2001) found that the condition number of system of Equations D5 and D6 may be too 
large and may result to unstable inversion. The regularization consists in approximation of the full system by the 
upper-triangular matrix:

⎡

⎢

⎢

⎣

⟨����⟩ ⟨����⟩

0 ⟨����⟩

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

��

�4
�

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

⟨(�� − ℎ�)��⟩

⟨(�� − ℎ�)��⟩

⎤

⎥

⎥

⎦

. (D9)

Figure D1. A posteriori experiments in decaying turbulence problem (similar to Figure 7) with the subgrid model DMM + Reynolds, where parameters CS and CR are 
estimated in different ways summarized in the legend.
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Figure D2. Coefficients CS and CR in DMM + Reynolds model. Black line: coefficients diagnosed from Direct numerical simulation data by least squares fit of subgrid 
flux. Color lines: coefficients predicted in a posteriori experiments.

The second line of Equation D9 gives the Smagorinsky parameter exactly the same way as DMM model (Equa-
tion C9). The second parameter CR can be stably computed as CS is known:

𝐶𝐶𝑅𝑅 =
⟨(𝑙𝑙𝑗𝑗 − ℎ𝑗𝑗)𝑏𝑏𝑗𝑗⟩ − 𝐶𝐶4

𝑆𝑆
⟨𝛼𝛼𝑗𝑗𝑏𝑏𝑗𝑗⟩

⟨𝑏𝑏𝑗𝑗𝑏𝑏𝑗𝑗⟩
. (D10)

We note that the originally proposed DMM + Reynolds model (Section 4.3) also determines coefficients CS and 
CR sequentially, and is different only in the stage of determining CR.

D3. Experiments

In Figure  D1 we show a posteriori experiments with three variants of DMM  +  Reynolds model, where 
parameters CS and CR are estimated as originally proposed (Section 4.3) or with the two-parameter dynamic 
procedures (D1 and D2 in Appendix  D). We observe that in general the performance of two-parameter 
dynamic procedure in both variants is similar to the originally proposed DMM + Reynolds model in the 
presented statistics. Our main concern is the performance of the dynamic model given in D1 in Appendix D 
at the coarsest resolution: it overestimates energy growth (Figure  D1d) and tends to produce numerical 
noise near the grid scale (Figure  D1a). The regularized dynamic model (D2 in Appendix  D) efficiently 
removes this drawback and is almost similar to the originally proposed DMM + Reynolds model. Our find-
ings can be explained by the analysis of the predicted coefficients CS and CR (Figure D2). The regularized 
dynamic model (D2 in Appendix D) predicts both coefficients CS and CR closely to the originally proposed 
DMM + Reynolds model for a range of resolutions. The classical dynamic model (D1 in Appendix D) under-
estimates the Smagorinsky coefficient at the coarsest resolution (Figure D2a) and it results in the formation 
of the numerical noise.

 19422466, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003771 by N
ew

 Y
ork U

niversity, W
iley O

nline L
ibrary on [15/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

PEREZHOGIN AND GLAZUNOV

10.1029/2023MS003771

28 of 31

Data Availability Statement
The software of the barotropic model in C++, QG model in Python and NEMO model in Fortran with imple-
mented parameterizations are available via Zenodo (Perezhogin & Glazunov, 2023), where we also provide simu-
lation data and Figure plotting functions.
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