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Abstract: Eddy-permitting numerical ocean models resolve mesoscale turbulence only partly, that leads to
underestimation of eddy kinetic energy (EKE). Mesoscale dynamics can be amplified by using kinetic energy
backscatter (KEB) parameterizations returning energy from the unresolved scales. We consider two types of
KEB: stochastic and negative viscosity ones. The tuning of their amplitudes is based on a local budget of
kinetic energy, thus, they are ‘energetically-consistent’ KEBs. In this work, the KEB parameterizations are
applied to the NEMO ocean model in Double-Gyre configuration with an eddy-permitting resolution (1/4 de-
gree). To evaluate the results, we compare this model with an eddy-resolving one (1/9 degree). We show that
the meridional overturning circulation (MOC), meridional heat flux, and sea surface temperature (SST) can
be significantly improved with the KEBs. In addition, a better match has been found between the time power
spectra of the eddy-permitting and the eddy-resolving model solutions.

Keywords: Two-dimensional turbulence, stochastic parameterization, kinetic energy backscatter, subgrid
scale modeling, ocean dynamics, mesoscale eddies.
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Numerical ocean models used in climate research have a relatively coarse resolution to properly resolve
mesoscale eddies, which contribute largely to the transport of scalars and momentum. Mesoscale eddies
emerge on the length scale of the Rossby radius of deformation due to baroclinic instability, and in the mid-
latitude ocean their qualitative length scale is 30 km. Considering the ability to resolve mesoscale eddies, the
ocean general circulation models (OGCMs) can be divided into three groups: ‘non-eddy-resolving’ models
have an approximate resolution of 1∘ and cannot simulate mesoscale eddies; ‘eddy-resolving’ models have
several mesh points for a mesoscale eddy and their resolution is 10 times finer. Finally, there are models
named ‘eddy-permitting’ which have an intermediate resolution. In the eddy-permitting models eddies are
represented in a computational grid, but their dynamics and generation are damped. Currently, the OGCMs
used in climate research (CMIP6) are changing from non-eddy-resolving to eddy-permitting resolutions [17].

Let us explain the difference between non-eddy-resolving and eddy-permitting models from the view-
point of turbulence research. Non-eddy-resolving OGCMs can be considered as RANS (Reynolds-Averaged
Navier-Stokes) simulations of quasi-2D turbulence, where the action of mesoscale turbulent motions is rep-
resented by the mean Reynolds stress. On the other hand, eddy-permitting OGCM is a Large eddy simula-
tion (LES, [35]) of partly-resolved turbulent field. So, not only mean values of Reynolds stress, but also its
time variations can be modelled to improve simulation, see [3] for more details. Turbulent viscosity model
of Reynolds stress can be applied to both resolutions, but it has negative impact on LES simulations in the
following meaning. Due to the smoothing action, large turbulent viscosity leads to increasing of simulated
turbulence field in spatial scale and reduces effective resolution of LES simulation. So, the attractive research
direction is to construct turbulent closures of quasi-2D turbulence for eddy-permitting OGCMs that overcome
smoothing property of usual turbulent viscosity parameterization.

There are alternative parameterizations of subgrid eddies. Scale-similarity model (SSM, [2]) filters re-
solved turbulence field into small- and large-scale parts, followed by the computation of their interaction.
Dynamic model [18] analyses SSM tendency and estimates energy flux towards unresolved scales in order to
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adjust eddy viscosity coefficient. Concerning quasi-2D flows, these subgrid closures were studied only in the
simplest barotropic models [5, 28, 30, 31]. We can guess why they were not applied to more complex quasi-2D
models: in contrast to 3D turbulence (where they are popular), 2D one is characterized by the dual cascade of
energy end enstrophy [22], as a result, SSMmodel captures both these fluxes (see Fig. 3 in [31]). Unfortunately,
SSMmodel is inaccurate and cannot guarantee proper balance between energy and enstrophy fluxes. So, it is
more attractive to simulate consequences of dual cascade by different turbulence closures: one for enstrophy
flux towards subgrid scales (turbulent viscosity) and another one for energy flux from subgrid scales (Kinetic
Energy Backscatter, KEB, [7]). Also we mention parameterizations designed specially for 2D turbulence: in
[20] subgrid scales are simulated stochastically which gives subgrid force tendency, in [27] stochastic ten-
dency corresponds to probability distribution conditioned on the observed flow and in [29] artificial neural
network approach is considered.

KEB is a parameterization which returns energy from unresolved turbulent scales to resolved ones, con-
trary to eddy viscosity. This parameterization models poorly resolved inverse energy cascade inherent to 2D
turbulence. Concerning quasi-2D flows, one of the first experiments with KEB was devoted to barotropic tur-
bulence on a sphere [11]. Later, stochastic KEB was used to increase ensemble spread in weather prediction
system [4]. Recently it was proposed to use KEB parameterizations to improve eddy-permitting ocean simula-
tions [12, 13]. The simplest KEB closures are based on the Laplace operatorwith a negative viscosity coefficient
[12, 13] (another linear operator is possible [15, 21, 36]) or on a stochastic tendency [12, 19]. KEBwere shown to
be effective in restoration of the barotropic eddy kinetic energy spectrum [12, 13, 31] and themean flow [12, 13].
It improves barotropic instability simulation: KEB leads to reduction of error norms [21] and to increasing in
increments of unstable modes [30]. In spite of the success in simulations with simplified quasi-geostrophic
equations, long time experiments in GCMs appeared only recently: flow in reentrant channel [15], ‘Never-
world’ configuration in the MOM ocean model [14], global ocean configuration [16], and experiments with
idealizedmodels of atmosphere [8, 38]. These works show large improvements in reproducing of the first and
second moments of the flow statistics.

In this work we apply two KEB parameterizations, negative viscosity and stochastic ones, to improve the
NEMO ocean model [25, 26] at coarse eddy-permitting resolution (1/4∘) in Double-Gyre configuration [24].
Intending to improve the mesoscale physics, we compare coarse models with respect to an eddy-resolving
one (1/9∘), which allows for mesoscales eddies, but not submesoscale ones. Both KEBs are introduced into
momentum equations, and they are ‘energetically consistent’, which means that we tune the KEB amplitude
to compensate the kinetic energy loss due to eddy viscosity. The prohibition of energy transfer to the subgrid
scales is natural, since dynamics of 2D fluids redistributes energy into large scales in many configurations
of the experiments (see [9, 32–34]). The possibility of returning not only kinetic, but also potential energy, is
discussed in [3, 21, 37]. Here we follow the simplest approach. Similarly to [13] and [15], we define the neg-
ative viscosity KEB with coefficient depending on the amount of subgrid energy. The computation stability
is ensured by biharmonic eddy viscosity damping. The stochastic KEB has the functional form of a random
streamfunctionweighted by the local dissipation rate, as proposed in [4]. The spatial correlation is controlled
by multiple applications of a simple spatial filter to the generated spatial white noise, as proposed in [19].
Both KEB parameterizations increase the eddy kinetic energy (EKE) in an eddy-permitting model. It makes
the meridional eddy heat flux close in eddy-permitting and eddy-resolving models. As a result, the sea sur-
face temperature (SST) and the meridional overturning circulation (MOC) were restored with the use of KEB.
Finally, we report improvements in the time power density spectrum.

1 Double Gyre setting
We use an open access NEMO model (version 3.6) [26] in Double-Gyre configuration described in [24]. Note
that there is some discrepancy in the parameters between the open access Double Gyre code and paper [24].
We hope that this is the reason why we have some quantitative differences. If it is not mentioned, we do not
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Fig. 1: Snapshot of surface relative vorticity in f (Coriolis parameter) units. 30 March after spin-up. R4 – eddy-permitting model,
R9 – eddy-resolving model, R4 negative viscosity and R4 stochastic – eddy-permitting models with KEB parameterizations.
Colorbar is saturated at ±0.5. The white rectangle is explained in Fig. 10.

change the source code. The ocean model solves primitive equations (the vectors are in bold):

dT
dt = FT ,

dS
dt = FS (1.1)

∂Uh
∂t
+ advh + corh = −

1
ρ0
∇hp + FUh (1.2)

∂η
∂t
= −H∇hUh (1.3)

∂p
∂z
= −ρg, ∇ ⋅ U = 0 (1.4)

ρ = ρ0(1 − a(T − T0) + b(S − S0)) (1.5)

where T, S,U, η, ρ, and p are the potential temperature, salinity, velocity, free surface height, density, and
pressure, respectively; Uh is the horizontal part of the velocity, and Uh is its vertical average. FT , FS , FUh are
the external forcings and physical parameterizations. We introduce a Lagrangian derivative d/dt = ∂/∂t +
(U ⋅ ∇), a nabla operator ∇ = (∂x , ∂y , ∂z), and its horizontal part ∇h = (∂x , ∂y) . Exact expressions for the
advective and Coriolis terms advh and corh are given in [26]. We use TVD and energy-conserving scheme
for scalars and momentum advection, respectively (see [26]). In our configuration the free surface equation
(1.3) and the equation of state (1.5) are linear. The EOS parameters are as follows: ρ0 = 1026 kg m−3, a =
2 ⋅ 10−4K−1, b = 7.7 ⋅ 10−4psu−1, T0 = 10∘ C, S0 = 35psu. The computational domain is a flat-bottomed
rectangular box Lx × Ly × Lz = 3180 km × 2120 km × 4 km in the β-plane approximation with free-slip and
no heat flux, no salt flux spatial boundary conditions, and quadratic bottom drag. The basin is centered at
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Tab. 1:Model experiments (R1, R4, R9) and their parameters. Unless otherwise mentioned, diffusivity/viscosity acts in horizon-
tal direction.

R1 R4 R9
non-eddy-resolving eddy-permitting eddy-resolving

nx × ny × nz 30 × 20 × 30 120 × 80 × 30 270 × 180 × 30
mesh step 1∘ , 106 km 1/4∘, 26.5 km 1/9∘, 11.7 km
time step 120 min 30 min 800 sec

eddy diffusivity isoneutral ∇2h, 10
3m2s−1 ∇4h, −10

10m4s−1 ∇4h, −10
9m4s−1

eddy viscosity ∇2h, 10
5m2s−1 ∇4h, −5 ⋅ 10

11m4s−1 ∇4h, −5 ⋅ 10
10m4s−1

∼ 30∘ N and rotated by 45∘ to the zonal direction in lat-lon coordinates (see Fig. 1). Note that the metric terms
inherent to spherical geometry are excluded.

The free surface is stressed by zonal wind with maximum eastward speed at 36∘ N and maximum west-
ward speed at 22∘ N. The following three surface buoyancy fluxes sustain a south-north decline of the surface
temperature and salinity. The conductive heat flux from the atmosphere is given by Q = γ (Tatm − TSST), TSST
and Tatm are the surface ocean temperature and atmosphere temperature, respectively, γ = 40 Wm−2 K−1.
Also, solar radiation and freshwater fluxes are prescribed at the surface. The listed forcings varywith latitude
and seasonally and are given in [24].

We considermodels with three uniform spatial resolutions. The parameters are given in Table 1. R1model
is initialized at rest with vertical profiles of temperature and salinity uniformly applied to the whole basin
[24]. We accomplish spin-up of R4 and R9models, first running R1 model for 1000 years and then continuing
the computations with R4 or R9 models for 120 years. The last 20 years are stored for analysis. The Rossby
deformation radius for the resulting stratification varies from 40 km in the south to 5 km in the north [24]. The
diffusion/viscosity coefficients for models R1 and R9 are taken from [24]. The viscosity in model R4 is almost
the smallest possible. Further decreasing leads to wrong reproduction of the meridional eddy heat flux, as
will be shown below.

2 Kinetic energy backscatter (KEB) parameterizations

2.1 Negative viscosity KEB

This parameterization supplements horizontal biharmonic momentum damping in the momentum equation
(1.2) with additional negative viscosity term returning energy, as proposed in [12]:

∂Uh
∂t
= ⋅ ⋅ ⋅ + ν4∇4hUh + ∇h (ν2∇hUh) . (2.1)

Here ∇h is assumed to act on the vector componentwise. When ν4 < 0, the grid-scale numerical noise is
effectively dissipated. The viscosity ν2 ⩽ 0 must be negative to return the energy. The choice of negative
viscosity term for KEB is natural, since it is one of the simplest linear operators with a characteristic length
scale larger than that of the biharmonic operator. Moreover, it is shown by R. Kraichnan in [23] that subgrid
2D turbulence produces a tendency represented by the Laplace operator in the middle and large scales with
a negative viscosity coefficient. To take into consideration spatial non-homogeneity of the eddy field and
weak dynamics near the bottom, we follow works [13, 15, 38] and introduce dependence on the coordinates
ν2(x, y, z, t) ⩽ 0, ν2 is found based on the ‘energetically consistent’ property: the joint energy flux to subgrid
scales corresponding to the negative viscosity and biharmonic termsmust be zero. This property is consistent
with the idea of inverse energy cascade: the energy shall not pass to subgrid scales. The energy fluxes to
subgrid scales related to the biharmonic and negative viscosity terms are expressed in Galilean invariant
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form following [38]:

Ėdiss = ν4∇hUh ⋅ ∇h (∇2hUh) (2.2)
Ėback = ν2∇hUh ⋅ ∇hUh . (2.3)

The signs of the fluxes are as follows: ∫ Ėdissdxdydz > 0, ∫ Ėbackdxdydz ⩽ 0. Local equalization of these
fluxes Ėdiss (x, y, z, t)+ Ėback (x, y, z, t) = 0 leads to an ill-posed problem for finding ν2 if |∇hUh| = 0. To over-
come it, papers [13] and [38] introduced an equation for subgrid energy (e ≡ e(x, y, z, t)), which is produced
by dissipation (Ėdiss) and lost to the resolved scales (Ėback):

de
dt = cdissĖdiss + Ėback + νe∇

2
he. (2.4)

Here d/dt is the Lagrangian derivative (advection), which is implemented in the code with the simplest up-
wind scheme [26], νe = 1000m2s−1 is equal to the diffusivity of eddies inmodel R1. Contrary to [38], we apply
the Lagrangian derivative instead of a partial derivative, which seems to be more physical and was originally
proposed for the subgrid energy equation in [10]. As in [15], cdiss ∈ (0, 1) allows one to reduce the backscat-
ter power. We found cdiss = 0.8 to be satisfactory. Larger values produce overestimated strong vortices and
a strong meridional eddy heat flux near the surface at the WBC separation latitude. The subgrid energy e
defines the negative viscosity coefficient:

ν2 = −cback∆x√max (e, 0) (2.5)

where ∆x is the grid spacing and cback = 0.4√2 , as in [13]. Despite the fact that ∫ Ėdissdxdydz > 0, local
values of Ėdiss may be negative, thus producing negative values of e. Introducing of max-function turns off
KEB at these points. Neumann boundary conditions for the terms ∇h(ν2∇hUh) in (2.1) and νe∇2he in (2.4) are
applied: (∇hUh)⋅n = 0 and (∇he)⋅n = 0,n is the normal vector to the horizontal boundary. As in [13], we report
weak sensitivity of the results on the model for e used. Our understanding is that an additional equation for
subgrid energy is required only to make the problem for determining ν2 well-posed. In the next section it will
be shown that the stochastic KEB can be tuned without an additional equation for subgrid energy.

2.2 Stochastic KEB

Let us construct a quasi-barotropic (quasi-2D) stochastic streamfunction as proposed in [4]:

ψ (x, y, z, tn) = φ (x, y, tn) ⋅ A (x, y, z, tn) (2.6)

where φ(x, y, tn) is a discrete random field, i.e., φ is independent N(0, 1) variables at each mesh point and
time layer tn (discrete-space-time white noise) with zeros at the boundary, A is the amplitude controlling the
energy input. The streamfunction modifies the momentum equation (1.2) as follows:

∂Uh
∂t
= ⋅ ⋅ ⋅ + α∇⊥h S

n (ψ) (2.7)

where∇⊥h = (−∂y , ∂x), αwill be defined later. The function Sn(⋅) introduces n applications of a spatial discrete
filter:

S (ψ) = ψ + (
∆x)2

8 ∇
2
hψ. (2.8)

This filter is based on the Laplace operator already contained in the model and nullifies the checker-
board grid noise ((−1)i+j, i and j are indices along the x- and y- directions) if a second order approximation is
used. Zero Dirichlet boundary conditions are applied. The physical reasoning for stochastic parameterization
with lateral white noise is again taken from [23], where subgrid turbulence was shown to produce stochastic
forcing in small resolved scales. In contrast to [19], we generate random streamfunction, instead of random
Reynolds stress components. Streamfunction approach gives analogouswavenumber spectrum, but does not
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require removing divergence of the resulting forces in momentum equation [6]. According to [19], the filter
Sn(·) defines the correlation radius of the resulting parameterization and can be considered as a correction of
a sharp wavenumber spectrum near the grid scale to account for numerical effects of non-spectral advection
schemes. We use n = 6, which gives a correlation radius of several mesh points.

Contrary to the negative viscosity KEB, local equalization of the energy fluxes Ėdiss and Ėback is possible
without an additional equation for subgrid energy. According to [1], energy generation by the white noise
process is proportional to the squared amplitude (Ėback ∼ −A2) and, hence, we choose:

A (x, y, z, tn) = √max (Ėdiss, 0) . (2.9)

Finally, the energy generation and dissipation fluxes integrated over the domain should be equal. Again,
using [1] we compute the energy generation for white noise and obtain a relation for finding the only free
parameter α:

α2∆t
2 ∫⟨
∇
⊥
h S

n (ψ)
2⟩dxdydz = cdiss ∫ Ėdissdxdydz. (2.10)

Here ∆t is the time step, and the angle brackets ⟨⋅⟩ denote averaging over realizations of the random field φ.
The left-hand side of the above equation can be estimated analytically taking into consideration knowledge of
the wavenumber spectra [4], but still with simplifications. Our novelty is to drop averaging over an ensemble:

∫⟨∇
⊥
h S

n (ψ)
2⟩dxdydz ≈ ∫ ∇⊥h S

n (ψ)
2dxdydz (2.11)

where the right-hand side is computed directly for the current realization of φ. This method is based on the
following facts: (1) the ensemble-mean of RHS equals LHS and (2) the standard deviation of RHS is 7% of its
mean value. Optimal value of cdiss is 1, in contrast to 0.8 in negative viscosity KEB. It can be explained by the
fact that stochastic KEB excites inertial waveswhich are extensively dissipated by the numerical filter applied
to the free surface equation (see [26]).

3 Results
The model in Double Gyre setting simulates the western boundary current (WBC) similar to Gulfstream or
Kuroshio. At some latitude, theWBC separates from the boundary forming, in the zonal direction, an offshore
extension which divides the north and south gyres (see Fig. 1). The separation latitude is strongly dependent
on the resolution, and it moves to the south as themesoscale and submesoscale eddies become resolved [24].
TheWBC separation point and its extension strength are strongly associatedwith the sea surface temperature
(SST) and the sea surface height (SSH), since their isolines pass along the jet current.

Below,we consider 4models: an eddy-permittingmodel R4, an eddy-resolvingmodel R9, andR4with two
KEB parameterizations: negative viscosity and stochastic ones. They are spun up as described in Section 1.

3.1 Eddy kinetic energy

Strength of the eddy activity can be attributed to the eddy kinetic energy (EKE) level (⟨u2⟩/2, where u is the
deviation from the time mean ⟨u⟩ over the last 20 years). Applying the KEB parameterizations allows one to
increase the lateral mean EKE of coarse models approximately up to the level of model R9 at all depths (see
Fig. 2). In contrast to work [15], where coarse models with KEB work fine over the whole depth, we report
overestimated EKE after KEB applying at depth more than 200m. Spatial distribution of surface EKE is given
in Fig. 3 in colour. Both KEB parameterizations lead to shift of surface EKE maximum southward, which is
consistentwith referencemodel (R9) prediction.However,wepoint out that the surfaceEKE inmodelsR4with
KEBs is elongated along the boundary, contrary to elongation in the zonal direction inmodel R9. Itmeans that
long jet extension cannot be simulated at a coarse grid even with these KEB parameterizations.
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Fig. 2: 20-year mean eddy kinetic energy (EKE) averaged laterally as a function of depth,m2/s2. Comparison of eddy-permitting
(R4, R4+KEBs) and eddy-resolving (R9) models.

Fig. 3: In colour: 20-year mean surface eddy kinetic energy (EKE),m2/s2. The colorbar is saturated at 0.3. In contours: 20-year
mean sea surface temperature (SST), ∘ C. Comparison of eddy-permitting (R4, R4+KEBs) and eddy-resolving (R9) models.
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Fig. 4: In colour: 20-year mean eddy meridional heat transport integrated zonally,W/m. In contours: 20-year mean zonally av-
eraged potential temperature. Results for R9 model. Black rectangle shows strong along-gradient flux. White rectangle shows
strong southward anti-gradient flux.

3.2 Eddy heat flux

One of themost important characteristics of the eddy activity is the transport of scalars. Under the prescribed
surface heat fluxes, ocean flows produce meridional heat transport (MHT) towards north: Q = ρ0CpTV,
where Cp ≈ 3992JK−1kg−1 is theheat capacity, andV is themeridional velocity; its dimension is [Q] = W/m2.
Note that we neglect the diffusion heat transport, since its action is minimized with the use of a biharmonic
operator. The MHT consists of two parts: mean-flow meridional heat transport (MMHT),

ρ0Cp⟨T⟩⟨V⟩ (3.1)

where the angle brackets stand for time-averaging over the last 20 years, and the rest – eddy meridional heat
transport (EMHT),

ρ0Cp(⟨TV⟩ − ⟨T⟩⟨V⟩). (3.2)

In case of nonzero integral flow across zonal cross-section, MHT can depend on the units of potential temper-
ature, ∘ C or K. So, we present here independent EMHT only. The EMHT strongly varies with resolution: it is
almost zero for model R1, but high resolution simulations have a significant EMHT, of the order of the MMHT
and in opposite direction (see [24] for details).

As far as the northern gyre is colder than the southern one, we expect eddy heat flux to be directed north-
ward, i.e., in the direction opposite to the surface temperature gradient. As follows from Fig. 4, where the
distribution of the EMHT in depth for model R9 is given, EMHT is northward only in the surface layer 200m
deep. Exception to the rule is the surface region 37∘–42∘ N, where strong along-gradient eddy heat flux oc-
cur, see black rectangle in Fig. 4. The most significant EMHT (note the logarithmic depth-scale) corresponds
to a region 200m–500m in depth and 23∘–30∘ N, which is shown by the white rectangle in Fig. 4. The heat
in this region fluxes southward, which is consistent with the northward gradient of potential temperature
at this depth. This flux determines a sign of depth-integrated EMHT in southern gyre (see Fig. 6). Both KEB
parameterizations amplify this negative flux in model R4 (see Fig. 5), and break the wrong negative heat flux
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Fig. 5: In colour: 20-year mean eddy meridional heat transport integrated zonally,W/m. In contours: 20-year mean meridional
overturning streamfunction ΨMOC in Sverdrups. Comparison of eddy-permitting (R4, R4+KEBs) and eddy-resolving (R9) models.
Black rectangle shows wrong southward heat flux.
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Fig. 6: 20-year mean meridional eddy heat transport integrated zonally and in depth,W. Comparison of eddy-permitting (R4,
R4+KEBs) and eddy-resolving (R9) models.
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Fig. 7: 20-year mean meridional eddy heat transport integrated zonally and in depth,W. Solid black line corresponds to R9
model, dashed black line to R4. Colour lines stand for R4 model with deviating viscosity (ν4) and diffusivity (µ4).

in the region 32∘–35∘ N, see black rectangle. Both KEBs allow us to shift latitude of maximum negative depth-
integrated heat flux in south direction, although its maximum negative value is underestimated (see Fig. 6).
Also, models with KEBs overestimate positive depth-integrated heat flux north of 30∘ N (see Fig. 6). The effect
of shifting the latitude ofmaximumnegative EMHT cannot be achieved by adjusting viscosity (ν4) or diffusion
(µ4) coefficients (see Fig. 7).

3.3 Mean fields

The meridional overturning circulation (MOC) is shown by contours in Figure 5. The MOC is described by the
following streamfunction: ΨMOC(y, z) = ∫

−z
−H ⟨V(x

, y, z, t)⟩dxdz, where x and y are the coordinates
along longitude and latitude, respectively, z ∈ (−H, 0) is the depth, the angle brackets is time averaging
over the last 20 years and V is the meridional velocity. The circulation in all models consists of 4 cells, and
the largest one is at the bottom (note logarithmic depth-scale). This cell is shifted northward in model R4 as
compared to R9. Both KEB parameterizations restore the correct position of the bottom cell at about 30∘ N.
The upper northern cell acquires correct shape as a result of applying the KEBs. Stochastic KEB reproduces
northern bottom cell better than negative viscosity one (see −1.5 isoline in Fig. 5).

Improvements in eddy activity and mean circulation have positive impact on mean surface fields. Figure
3 shows the 20-year mean SST in contours for 4 models. The major discrepancy betweenmodels R4 and R9 is
in isotherms 21 and 22. Applying the KEB straightens these isotherms, which leads to a significant fall of the
errors in themean SST. See Table 2 for errors inmean fields (SST, SSH, SSS). Spatial distribution of deviations
of SST and SSH with respect to model R9 is shown in Figs. 8 and 9, respectively. As a result of both KEBs
applying, errors fall near jet separation point, while negative viscosity KEB introduces additional errors at
the north.

3.4 Time variability

We study the time variability of the models by computing the time power density of the surface EKE (see
Fig. 10). The power density is averaged over a white rectangle shown in Fig. 1 to reduce its oscillations and to
exclude its strong dependence on the WBC separation point. The spectra consist of two power-law intervals
(ν−4, ν−2) and a long-period tail. We do not give the physical reasoning for the power laws, but guess that
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Fig. 8: 20-year mean difference in SST (Sea surface temperature) between eddy-permitting (R4, R4+KEBs) models and eddy-
resolving R9 reference, ∘ C.

Fig. 9: 20-year mean difference in SSH (Sea surface height) between eddy-permitting (R4, R4+KEBs) models and eddy-resolving
R9 reference, m.

Tab. 2: Norms of errors in 20-year mean SST, SSH, SSS (sea surface temperature / height / salinity) between coarse (R4, R4 +
KEBs) models and R9 reference. The following two norms for any φ(x, y) are separated by the semicolon:max(|φR4 − φR9|);
mean(|φR4 − φR9|).

R4 R4 negative viscosity R4 stochastic

SST, ∘ C 7.0; 0.4 3.1; 0.3 4.3; 0.27
SSH, m 0.68; 0.062 0.38; 0.039 0.40; 0.040
SSS, psu 0.54; 0.108 0.33; 0.098 0.52; 0.070

the change in the slope at a 5-day frequency is related to the absence of mesoscale dynamics on smaller time
scales. Both power-law intervals are underestimated in model R4. The KEB parameterizations allow one to
increase the power density in the middle interval ν−2 up to the level of model R9. The negative viscosity KEB
also improves the power density in the short-period interval ν−4. The stochastic KEB gives discrepancy with
model R9 in the short-period tail and has a singularity near 1-day oscillation. We guess that the white-noise
parameterization excites inertial waves which have a similar period. Earlier it was not reported anywhere
that KEB with the white-noise stochastic process excites inertial waves, possibly since most works consider
quasi-geostrophic equations (e.g., [12, 19]), where inertial oscillations are filtered out. We have tried a simple
modification of the stochastic KEB, including a temporal correlation with a lag of 1 day to force only the
middle-period interval. Correlated noise was generated using an autoregressive model of order 1 (AR-1), as [4]
suggests. The time-correlated stochastic KEB does not excite inertial oscillations (not shown), but it has one
moderate drawback: there is no more exact formula for the energy generation like (2.10), and it introduces
one free parameter (α) to be tuned by hand.

Finally, let us consider snapshots of relative vorticity (see Fig. 1). The R4 and R9 solutions are highly
different in the number of turbulent eddies and filaments. Both KEB parameterizations induce eddy activity
inmodel R4, but in different way. The stochastic KEB solution looks like ‘synthetic’ turbulencewhich consists
of turbulent eddieswithout filaments, and it is similar in the shape of its eddies to the stochastic KEB tendency
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Fig. 10: Time power density of surface EKE. Density is averaged over a white rectangle shown in Fig. 1. Time series correspond
to the last 20 years.

itself. The amount of undesirable noise in the solution canbe reduced if the time-correlated stochastic process
is used (not shown). The negative viscosity KEB, on the contrary, amplifies the existing filaments and large
eddies, but the solution suffers from the absence of small-scale features.

4 Conclusions
In this work, we have demonstrated that simple kinetic energy backscatter (KEB) parameterizations account-
ing for a badly resolved barotropic inverse energy cascade are able to improve general ocean circulationmod-
elswith an eddy-permitting resolution. The novelty of thiswork is the comparison of twoKEBs, stochastic and
negative viscosity, in the primitive-equations oceanmodel. Both KEBs give similar improvements in themean
characteristics. Specifically, themesoscale eddies are amplified and, consequently, eddy kinetic energy (EKE)
rises. As a result, the eddy meridional heat transport near the surface and in a moderately deep ocean was
restored. Large errors in the sea surface temperature and height were reduced in the region of jet separation.
Also, the bottom cell of the meridional overturning circulation (MOC) was shifted southward, as in the high
resolution model. A moderate difference concerns the bottom northern MOC cell, which is better reproduced
with the stochastic KEB. It has been shown that the KEBs effectively improve the time power spectra of EKE,
but a white-noise process can lead to an undesirable generation of inertial waves, which can be overcome
by introducing a time-correlated stochastic process. The major difference between the KEBs is in the solution
type. The stochastic KEB seems to introduce too much small eddies without filaments, but the negative vis-
cosity one amplifies the existing filament-eddy field. Future work will be devoted to studying more realistic
ocean configurations with varying ocean depth and spherical geometry.
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