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Abstract: The problem of modelling 2D isotropic turbulence in a periodic rectangular domain excited by the
forcingpattern of prescribed spatial scale is considered. This setting could be viewed as the simplest analogue
of the large scale quasi-2D circulation of the ocean and the atmosphere. Since the direct numerical simula-
tion (DNS) of this problem is usually not possible due to the high computational costs we explore several
possibilities to construct coarse approximationmodels and corresponding subgrid closures (deterministic or
stochastic). The necessity of subgrid closures is especially important when the forcing scale is close to the
cutoff scale of the coarse model that leads to the significant weakening of the inverse energy cascade and
large scale component of the system dynamics.
The construction of closures is based on the a priori analysis of the DNS solution and takes into account the
form of a spatial approximation scheme used in a particular coarse model. We show that the statistics of a
coarse model could be significantly improved provided a proper combination of deterministic and stochastic
closures is used. As a result we are able to restore the shape of the energy spectra of the model. In addition
the lagged auto correlations of the model solution as well as its sensitivity to external perturbations fit the
characteristics of the DNS model much better.

Keywords: Two-dimensional turbulence, stochastic parameterization, kinetic energy backscatter, subgrid
scale modelling, scale-similarity.
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1 Introduction
Correct description of atmospheric and oceanic dynamics must take into account a huge range of interacting
scales resulting in the fact that direct numerical simulation (DNS) of the global circulation is technically
impossible. The traditional way to reduce computational costs is to follow large eddy simulation or LES [17]
ideology where only the large scale component of the flow is modelled directly while unresolved small scales
and corresponding resolved-unresolved scale interactions must be somehow parameterized. Modelling of
unresolved scales and forces represent the so-called closureproblem. In a 3D turbulence case there are several
well known approaches to tackle this problem [50]. However, in a 2D case the LES approach is less studied.
Moreover it must be different from the 3D one as the equations for the 2D turbulence have some specific
properties. In particular, they allow one to specify the additional (to the 3D case) conservation laws, the so-
called Casimir invariants [20, 21, 46–48, 51]. The second Casimir invariant (the enstrophy) plays especially
important role for the 2D flows. It causes redistribution of the energy to the large scales in forced turbulence
problem [11, 29]. It should be noted that due to the strong difference in vertical and horizontal scales, the
large scale atmospheric and oceanic circulation could be viewed as a quasi-two-dimensional geophysical

*Corresponding author: Pavel A. Perezhogin,Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow 119333, Russia. E-mail: pperezhogin@gmail.com
Andrey V. Glazunov, Andrey S. Gritsun,Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow 119333, Russia



198 | P. A. Perezhogin, A. V. Glazunov, and A. S. Gritsun, Kinetic energy parameterizations

turbulence [16]. That is why the LES approach in 2D case must be studied in more detail to provide physically
consistent parameterizations for global general circulation models.

Additional aspect that should be taken into account while constructing subgrid parameterizations is a
numerical scheme used for spatial approximation of model equations. Let us focus on the simplest math-
ematical model approximating to the first order dynamics of quasi 2D turbulent flows in atmosphere and
ocean, namely the system of 2D incompressible fluid equations. According to the classical Kraichnan–Leith–
Batchelor similarity theory (KLB, [7, 29, 33]) the energy from the forcing acting in a small spectral interval
near some wavenumber kf is transferred to the larger scales while the enstrophy redistributes to the smaller
ones. As a result (in a non-dissipative case) two inertial intervals should emerge with the energy spectrum in
the following form:

E (k) = { Cf ε
2/3k−5/3, k ⩽ kf

Cbη2/3k−3, k > kf .
(1.1)

Here ε and η are the energy and enstrophy inflow per unit surface, respectively.
Similarity theory assumes spectrally local transfers of energy and enstrophy in inertial ranges. The non-

local nonlinear interactions between scales with k ⩽ kf and k > kf lead to deviations of the spectra from the
KLB theory predictions especially in the short-wave range where strain rate becomes nonlocally dominated
[30]. The exact shape of the long-wave range energy spectrum is also debatable (see [9] and overview in this
paper).

As was shown in [26] the spatial discretization of the model equations works effectively as an additional
filtration of the small scales applied to the system dynamics. In some cases it could distort energy/enstrophy
cascades in the model. When the turbulence is excited by a large scale forcing, system dynamics is mainly
controlled by the prolonged direct enstrophy cascade and large scales are not sensitive to a spatial approxi-
mation applied. Conversely, in the case of a small scale forcing, numerical scheme errors distort and damp
circulation on a forcing scales. As a result models usually have weakened backward energy cascade and sig-
nificantly damped large scale circulation (some examples are presented below, see also [45]). The latter case is
themost challenging one for constructing subgrid parameterizations. Note that the small scale forcing case is
relevant to the problem ofmodelling general oceanic circulation as atmospheric winds andmesoscale eddies
could be viewed as a small scale oceanic driver.

Currently there are several approaches to constructing subgrid scale parameterizations for 2D turbulence
systems. The common basic principle is to reconstruct missing subgrid forces producing enough dissipation
of the enstrophy and conservation (exact or approximate) of the energy in a system. One of the widely used
ideas here is to restore somehow (unresolved) energy transfer from subgrid scales to the large ones (i.e., pro-
vide ‘kinetic energy backscatter’ or KEB [52]). These schemes could be further divided into two large groups of
stochastic [8, 52] and deterministic parameterizations. In turns the deterministic KEB schemes could be linear
[1, 27, 58] or nonlinear [10, 14, 49]. Techniques combining stochastic and deterministic approaches also exist
[15, 23]. Usually the closure construction is based on the a priori analysis of the high resolution model (DNS)
output to estimate statistics of correspondent subgrid forces. It is important to include into consideration an
advection scheme of a coarse model [26, 53, 58].

Besides ideas relying on the energy redistribution approach one can also mention MTV (Majda–Timofe-
yev–Vanden Eijnden) or stochastic mode reduction method [36] based on the assumption of the time scale
separation between the small and large scales. The MTV gives encouraging results for 1D systems like Burg-
ers equation [18] and for 2D systems (barotropic vorticity equation on a sphere [22] with a small number of
retained degrees of freedom). Though for the finite difference version of the 2D incompressible fluid this ap-
proach is yet to be developed. Also mention another approach to constructing subgrid parameterizations for
systems with weak coupling that is based on the response theory and was proposed in [63] and [62].

Before describing the content of the work presented in the paper wewould like tomention one important
problem related to the use of subgrid parameterizations. For the climate modelling studies it would be very
desirable to have reduced system approximating correctly not only statistics of the original model (nature)
but its sensitivity to an external forcing. The second requirement does not follow from the first one [2] and is
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very nontrivial. As a result we must check not only the basic statistical properties of reduced models (energy
spectra etc.) but also their sensitivity properties.

In this paper we study the problem of modelling 2D incompressible fluid forced by a small scale forcing.
We avoid the analysis of model dynamics in the enstrophy inertial range and focus on the ability of numerical
model to predict the inverse energy cascade, even when the mesh cutoff is very close to the scale of external
forcing. We restrict ourselves to the uniformly isotropic case keeping in mind the fact [10] that the closures
obtained for this simple system could be generalized to the more general case with nonzero rotation. We
consider four different numerical schemes for spatial approximation of the model equations. Historically
they all are used in climate or weather forecast models of Institute of Numerical Mathematics of the Russian
Academy of Sciences [19, 57, 59] as well as in the other well-known models [37, 44]. As it is demonstrated
bellow, the subgrid forces generate energy at all scales of backward energy cascade supporting large scale
dynamics. This missing element must be restored in coarse models by some KEB parameterization. An a
priori analysis of subgrid forces in this paper is analogues to the one in [43, 58]. We analyze three different
KEB schemes. The first one is the stochastic KEB parameterization [8, 15, 52]. The second one is the linear
deterministic ‘negative eddy viscosity’ scheme [15, 31] that was applied previously to similar models in [27,
28, 58]. In additionwe test a subgridmodel based on the scale-similarity [6, 38]. Note, that the scale-similarity
subgrid model of [6] is very close to the nonlinear gradient model (see, e.g., [61]). The last one was already
tested in a priori analysis of 2D turbulence [10, 41] where good correlation with subgrid forces was shown.
Also in the former paper, stable modification of nonlinear gradient model is presented.

We evaluate the effects of subgrid parameterizations by comparing statistical characteristics of coarse
modelswith the high resolution one. Statistics of interest are energy spectra and lagged auto correlation func-
tions of themodel solution.We also compare responses of themodels to a steady state external forcing. Paper
is structured as follows. In Section 2 we formulate model equations and introduce numerical discretization
schemes. Section 3 is devoted to the a priori analysis of the DNS data. In Section 4 we describe KEB schemes
and in Section 5 we present numerical results obtainedwith the coarsemodels. Summary of our results could
be found in Section 6.

2 Model equations and parameters
Let us consider dynamics of the 2D incompressible fluid in the rectangular box (x1, x2) ∈ [0, 2π) × [0, 2π) on
the non rotating plane with periodic boundary conditions. The amount of nodes (for coarse versions of the
model) is 360 in both directions (discretization steps are (hx1 , hx2)). In the DNS simulation we use 2160 ×
2160 resolution. With particular set of model variables (i.e., velocity-pressure or streamfunction-vorticity)
the equations of motion are as follows:

{
{
{

∂u
∂t + (u ⋅ ∇)u = −∇p − µ∆

2u − αu + f
∇ ⋅ u = 0,

{
{
{

∂ω
∂t + J (ψ, ω) = −µ∆

2ω − αω + f
∆ψ = ω

(2.1)

Here u = (u, v), p, ψ, ω are the velocity, pressure, streamfunction, and vorticity, respectively. Laplacian, gra-
dient, and Jacobian operators are ∆, ∇, and J (ψ, ω) = − ∂ψ∂x2

∂ω
∂x1 +

∂ψ
∂x1

∂ω
∂x2 , respectively, while (⋅) denotes inner

product of 2D vectors. Bold symbols define the respective 2D vector fields. Variables in (2.1) are related to each
other via the following expressions

u = (−
∂ψ
∂x2

, ∂ψ∂x1
) , ω = ∂v∂x1

−
∂u
∂x2

. (2.2)

2.1 Driving forcing and dissipative terms

External velocity forcing driving the turbulence in the model was taken in the form f = [a, b]Tsin (k ⋅ x + φ)
(vorticity forcing f could be found using relations (2.2)) with the norm of the wave vector k = (k1, k2) being
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close to |k| ≈ kf = 90. The wave vector components (k1, k2) and the phase φ ∈ [0, 2π] are chosen as discrete-
timewhite noises. The power input per unit area averaged over one time step ∆t could be evaluated according
to [3]:

ε = ∆t
2 ⟨

f 2x1 + f
2
x2⟩ =

∆t
4 (

a2 + b2) (2.3)

where angle brackets stand for the time averaging.Wefix energy source per unit area andunit time at the level
of ε = 1.5 ⋅ 10−4, and for any (k1, k2, φ) we calculate a and b from (2.3) taking into account zero divergence
condition for the forcing (i.e., ∇ ⋅ f = 0) giving additional linear relation for a and b.

Following ideas of [55] the background turbulence closure in (2.1) is representedbybi-harmonic damping.
This is the common practice for the modelling of the large scale circulation of atmosphere and ocean where
the dissipative terms are used to suppress numerical noise at short wave numbers. The coefficient µ was
calculated according to the ideas of [34] as the enstrophy dissipation at small scales (k > kf ) must be equal
to its generation by the random forcing provided that the KLB scaling theory (1.1) for the enstrophy is valid.
This gives the functional formula for µ:

µ = Ch ⋅ η1/3h4 (2.4)

where h is a grid step and η = k2f ε is the enstrophy source from the external forcing. Assuming that Cb = 1.5
in (1.1) (see high-resolved DNS results by [12]) and taking into account the finite difference approximation
of biharmonic operator (see [45] for complete numerics), we obtain Ch = 8.54 ⋅ 10−2 and the corresponding
values of coefficients µwhich provide identical enstrophy dissipations for an ideal power law spectra in direct
cascades: µ = 2.26 ⋅ 10−9 (for the coarse model setup with resolution 360 × 360) and µ = 1.64 ⋅ 10−12 (for
DNS model with resolution 2160 × 2160). The Rayleigh friction coefficient is α = 0.012 for both high and
low resolution models and was chosen this way to ensure that the backward energy cascade is long enough
in spectral domain.

2.2 Numerical schemes

Spatial approximation for the model written in terms of velocity-pressure variables was accomplished in the
following way. We use projection method [13] to approximate (2.1). Firstly, we find intermediate value of the
velocity (u󸀠) approximating half step variables with the second order Adams–Bashforth method (for any φ:
φn+1/2 = 3

2φ
n − 1

2φ
n−1):

u󸀠 − un
∆t = −[(u ⋅ ∇)u]h

n+1/2 − ∇hpn − µ∆2hun+1/2 − αun+1/2 + fn . (2.5)

Secondly, we project solution onto non divergent vector field space and renew the pressure. The low values
of the Courant number is used (CFL = ∆tUmax/h < 0.2) to make our results independent of particular choice
of a time integration method. Let us introduce finite difference operators:

δxi (φ) =
φ(xi + hxi/2) − φ(xi − hxi/2)

hxi
, φxi =

φ (xi + hxi/2) + φ(xi − hxi/2)
2

, i = 1, 2. (2.6)

Several methods for spatial approximation are tested.
– Scheme E. The scheme used in the INMOM ocean model [19] is constructed for Arakawa C-grid

[(u ⋅ ∇)ui]h = δxj (uj
xiui xj ) (2.7)

where summation over repeated indices is assumed. Provided existence of numerical analogue for the
continuity equation, the scheme E has analogue of energy conservation law [39].

– Scheme INMCM. Being one of the Arakawa-type schemes [5] the INMCM is used in the atmospheric com-
ponent of the climate model INMCM5 [59]. The scheme is written as a linear combination of advection
approximated in the two coordinate systems

[(u ⋅ ∇)ui]h =
2
3
uj xiδxjui

xj
+
1
3
u󸀠jδx󸀠j ui x󸀠j (2.8)
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Fig. 1: The power spectrum of the DNS (black) and coarse mod-
els (blue – scheme E, red – scheme INMCM, yellow – Z, green –
CCS).

where (u󸀠1, u󸀠2) is the velocity in the coordinate system (x󸀠1, x󸀠2) rotated by 45 degrees with respect to the
original coordinate system (x1, x2).

For the numerical integration of (2.1) written in terms of streamfunction–vorticity variables we again use
Adams–Bashforth scheme to approximate evolution equation for the vorticity. Next we update streamfunc-
tion by solving Poisson equation. The following spatial approximation methods were implemented.
– Scheme Z. Another Arakawa [4] scheme with second order central difference approximation for the ad-

vective nonlinear term J(ψ, ω) with skew-symmetric property conserving numerical analogue of the en-
strophy.

– Scheme CCS. Cascade finite volume semi-lagrangian scheme CCS [42] is used in the prognostic atmo-
spheric model SL-AV [57]. The CCS has the property of the total vorticity conservation. In our study the
CCS is used with CFL = 0.6.

– The DNS model is written in terms of Z scheme.

2.3 Reproduction of the DNS spectra with coarse models

The DNS and coarse models were integrated from zero initial conditions for T = [0, 200] (it is enough for
the model to reach statistical equilibrium). Then we run the models for additional T = [200, 1200] and store
their solution for further analysis. The DNS solution power spectrum is shown in Figure 1 (black line). Here
the forcing scale (kf = 90) is marked by the dashed vertical line and only the scales with k < 180 are shown.
Corresponding power spectra of coarse models are shown by colored lines (blue – scheme E, red – INMCM,
yellow – Z, green – CCS). The evident conclusion from Fig. 1 is that in the equilibrium state all coarse models
have much less energy in the large and intermediate scales (from 32% of the DNS level in the case of INMCM
to 14% for E). We suppose that the source of this problem is suppression of the inverse energy cascade due
to the damped medium scales and damped/unresolved small scales. Next two sections are devoted to the
construction of parameterizations able to reduce this error.

3 Analysis of subgrid forces in the DNS model

3.1 Subgrid forces

Let ω be a coarse grid vorticity obtained from the high resolution one (ω) by applying spatial filtration (i.e.,
the (⋅) operator) that zeroes Fourier coefficients of the vorticity field outside the [−kmax, kmax] × [−kmax, kmax]
spectral area. The discrete Fourier transformationmapsω uniquely to the N×N grid of the coarsemodel (N =
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2kmax). We assume that we can act on ω by either differential or coarse grid finite-difference operators (see
[26] for details).

For the analysis of subgrid forces we consider the advection terms only. Let us first obtain dynamic equa-
tion for the ω by filtering (2.1):

∂ω
∂t = − J (ψ, ω) + ⋅ ⋅ ⋅ = −[J (ψ, ω)]h + σ

ω + . . .

σω = [J (ψ, ω)]h − J (ψ, ω).
(3.1)

Here we separated J (ψ, ω) into two parts: [J (ψ, ω)]h stands for applying spatial approximation to coarse
grid, the rest (σω) is referred as the ‘subgrid forces’. In the case of velocity-pressure variables we have similar
formulas

∂u
∂t = − (u ⋅ ∇)u + ⋅ ⋅ ⋅ = −[(u ⋅ ∇)u)]h + σ

u + . . .

σu = [(u ⋅ ∇)u)]h − (u ⋅ ∇)u.
(3.2)

The subgrid forces could be further separated into two parts, i.e., the effects of unresolved scales (the first
term in the equation below) and approximation errors (the second term):

σu = {(u ⋅ ∇)u) − (u ⋅ ∇)u} + {[(u ⋅ ∇)u)]h − (u ⋅ ∇)u)}. (3.3)

Approximation errors are zero for spectral methods but could play an important role in the case of finite-
difference approximation methods [26].

3.2 Spectral properties of subgrid forces

Using the data from the DNS run described in Section 2.3 and applying decomposition (3.1), (3.2) we calcu-
lated statistical characteristics of resolved advection (calculated using coarse-grained fields and particular
numerical scheme, i.e., [(u⋅∇)u)]h) and subgrid forces. To be consistentwith the resolution of the coarsemod-
els introduced above we use the same 360 × 360 resolution for the coarse-grained tendencies and variables.
Three finite difference schemes (E, INMCM, and Z)were used to calculate time averaged power spectrumof re-
solved advection tendency (Fig. 2a) and the spectrum of the energy generation (Fig. 2b) by subgrid forces (i.e.,
−2πkRe ⟨ψ∗kσk⟩). The results for CCS scheme are not presented here as for the semi-lagrangian approxima-
tion we cannot extract coarse and subgrid part of the advection by applying simple spatial averaging formula
(3.2).

From Fig. 2a we see that for the all three schemes the full DNS advection tendency (J(ψ, ω)) could be well
reproduced by its coarse-grained part ([J(ψ, ω)]h) in large scales. However at the small scales subgrid part
of advection is important (note the difference at the right end of the spectrum between black and colored
curves in Fig. 2a). Apart from the frequency cutoff effect, the numerical scheme approximation errors could
also contribute here. Analogous results were also obtained in [32].

Despite the advection at large scales is correctly approximated by the coarse-grained part of the tendency,
the equilibrium dynamics of coarse models could be very different from the DNS one. The reason is missing
energy generation produced by the subgrid forces (see Fig. 2b). In the equilibrium state they generate as
much as 55% of the total energy supplied by the external forcing to backward cascade scales (k < 90). At
the same time for direct enstrophy cascade scales (k > 90) subgrid forces provide enstrophy dissipation. This
energy generation is nothing else that KEB from subgrid forces and it has similar shape for all three numerical
schemes considered. Themaxima of the energy generation curve is located in themiddle of the inverse energy
cascade interval. Therefore, subgrid forces systematically inject energy in a wide range of scales. If missed in
coarsemodels, it leads to the degradation of large scale circulation on ‘climate’ time scales due to theRayleigh
friction as shown in Fig. 1.

Most of the missing energy generations in Fig. 2b correspond to the scheme numerical errors (i.e., the
second term of the right hand side of (3.3)) contributing to about 2/3 out of the 55% of the total energy gen-
eration deficit while the rest is due to the missing interactions with subgrid scales. The net subgrid forces
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(a) (b)

Fig. 2: The spectrum (a) of the advection for the DNS solution (log-log scales). Black line indicates full DNS tendency, colored
lines show advection spectrum of large (coarsened) scales obtained using three different numerical schemes (blue – scheme E,
red – scheme INMCM, yellow – scheme Z). Energy generation (b) of subgrid forces (log-linear scales) for the DNS model (blue
– scheme E, red – scheme INMCM, yellow – scheme Z). Green line corresponds to stochastic parameterization and shown to
indicate its small magnitude.

energy generation quickly decreases with the increase of the resolution of the coarse-grained solution. Anal-
ogous calculations for the 720×720 resolution give the value of subgrid forces energy generation of just 15%
(instead of 55%) from the total.

3.3 Scale self similarity assumption

Let us assume that subgrid forces (3.2) can be represented in a divergent form:

σui = −δxj (τ
u
ij)

where τuij is the tensor taking into account both stresses induced by resolved-subgrid interactions and stresses
related to the approximation errors. To approximate τuij we borrow one of themost popular nonlinear subgrid
closures in 3D LES modelling. Namely, we use the so called scale-similarity approach proposed and tested
in [6]:

τu,Lij = uiuj
L − ui Luj L ≈ ui Luj L

L
− ui L

L
uj L

L
(3.4)

where (⋅)L is the LES model filter appearing in the standard LES model formulation. It is known that assump-
tion (3.4) works well in the a priori 3D tests giving high correlation between modelled and real stresses [6]. It
is also well known that (3.4) is dissipative overall but still can provide local energy generation. Similar family
of closures could be obtained by usingwider filter for the ‘external’ averaging (rather than the basic LES filter)
together with the proper rescaling of the closure (lu,Lij is the so-called Leonard tensor, see [24] for details):

τu,Lij ≅ Csiml
u,L
ij , lu,Lij = ũj

Lui L − ũj L ũi L . (3.5)

Here (̃⋅) is an additional (‘external’ or ‘test’) filter. Coefficient Csim could be either obtained from dynamical
consideration or calculated empirically [40, 60]. More detailed information on the use of Leonard tensor ap-
proach (3.5) in 3D LES modelling could be found in [38].

Adopting above ideas we suppose that scale-similarity approach can be used formodelling KEB in the 2D
case as well. Note that in the 2D case this type of closures was not tested extensively. In the a priori tests we
choose the LESmodel filter (⋅)L to be spectral one (⋅). The test filter (̃⋅) is based on three-point one-dimensional
filtration:

Fxi (φ) = a φ(xi − hxi ) + (1 − 2a)φ (xi) + a φ(xi + hxi ) (3.6)
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Fig. 3: The spectrum of the energy generation by subgrid forces in
the model (black) as well as the Leonard tensors obtained for 2.5
grid step filter (light blue), 2 grid step filter (green), and 1.5 grid
step filter (purple). Corresponding optimal normalizations for the
Leonard tensor are 0.65, 0.8, and 1.3 respectively.

where coefficient a < 1/2 defines the filter band width ∆f /hxi = √24a according to [35]. As a result, for 2D test
filter (̃⋅) we have:

φ̃ ≡ Fx2 (Fx1 (φ)) = Fx1 (Fx2 (φ)) . (3.7)

The following parameterization of unresolved flux in (3.2) is considered:

σui = −Csimδxj (l
u
ij) , luij = ũj ui − ũj ũi (3.8)

where δxj is defined on the grid of coarse model.
Let us illustrate this idea by calculating energy generation for model (3.8). Three test filters (̃⋅)were used

having the band widths of 1.5, 2, and 2.5 grid steps of coarse model h. In Fig. 3 we show the energy generation
spectrum for these three cases (∆f = 1.5h – purple, 2.0h – green, 2.5h – light blue) together with the energy
generation of E scheme subgrid forces (same as blue curve in Fig. 2b). Note that Leonard tensor energy gen-
eration in Fig. 3 was scaled by the Csim equals to 1.3, 0.8, and 0.65 for ∆f = 1.5h, 2.0h, and 2.5h, respectively.
From Fig. 3 we may conclude that Leonard tensor gives the correct functional dependence for the subgrid
forces and can be used as a KEB parameterization provided its amplitude Csim is adjusted and it is used for
sufficiently large scales.

4 Kinetic energy backscatter parameterizations
From our results shown in Section 2.3 it is evident that the coarse models are unable to represent the model
dynamics correctly having insufficient inverse energy cascade and damped large scale circulation modes.
Below we will consider several methods based on the analysis of the DNS model solution to fix this problem.

4.1 Purely stochastic parameterization

Stochastic energy backscatter parameterization considered in this section is based on the auto regression
model in the Fourier space as in paper [8]. Model parameters are calculated from the energy generation spec-
trum of the DNS experiment.

Let us write equation (2.1) in Fourier space assuming some time approximation

ωn+1k − ω
n
k

∆t = Fnk + s
n
k (4.1)

where Fnk is responsible for all dynamical processes, snk is a stochastic parameterization, n is the time step
number and k is the Fourierwavenumber. The stochastic tendency snk will bemodelled by theAR1 process [56]
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as
sn+1k = βks

n
k + dkε

n
k

with damping coefficient βk ∈ [0, 1), εnk is a white noise with unit variance and dk is its amplitude multiplier.
From the analysis of subgrid forces it follows that the correlations between its Fourier components are neg-
ligible, so we choose εnk to be statistically independent for different k. For the noise and the AR1 covariance
matrices we have [56]:

⟨εmk ε
n
k
∗⟩ = δm,n , ⟨smk s

n
k
∗⟩ = βk |m−n| d2k

1 − β2k
. (4.2)

In the above equations the asterisk denotes complex conjugationwhile angle brackets stand for the averaging
over the process realizations. From (4.2) we can obtain correlation time τkd and variance of the process snk in
the form

τdk =
∆t

1 − βk
, ⟨snk s

n
k
∗⟩ = d2k

1 − β2k
. (4.3)

Let us estimate the contribution of stochastic forcing snk to the energy budget. According to [3, 54], energy
(Ek = ωkω∗k /(2k2)) production rate during small temporal interval ∆t provided by stochastic term is the
following

k2 ∆Ek∆t = Re (ω
n
k s
n
k
∗) + ∆t2 snk snk∗. (4.4)

Right hand side of the above equation could be expressed in terms of snk only using (4.1) asω
n
k = ∆t∑

n−1
m=0 (smk +

Fmk ). After substitution of the last expression into (4.4), assuming that ⟨snkF
m
k
∗⟩ = 0 (see also, [8]) and per-

forming summation over m index with the use of (4.2) we have:

k2⟨∆Ek∆t ⟩ = lim
n→∞ ∆t [12 ⟨s

n
k s
n
k
∗⟩ + n−1∑

m=0 ⟨smk snk∗⟩] = ∆t2 d2k
(1 − βk)2

. (4.5)

Stochastic parameterization damping value βk is chosen tomake τkd close to the e
−1 decay time of subgrid

forces lagged autocorrelation function which is wavenumber-dependent and decreases as the wavenumber
increases. In turns, noise amplitude dk is obtained from the equation −Re ⟨ψkσ∗k⟩ = ⟨∆Ek/∆t⟩ for energy
inflow from the subgrid forces assuming that all this inflow is provided by stochastic parameterization given
by (4.5).

Note that inequality

k2⟨∆Ek∆t ⟩ = τ
d
k (1 + βk)

⟨snk s
n
k
∗⟩

2
⩾
1
2
τdk ⟨s

n
k s
n
k
∗⟩

suggests that the noise variance is inversely proportional to the decorrelation time (provided energy flux is
kept fixed). As a result, stochastic parameterization term has sufficiently small amplitude compared with the
advection on large scales where the characteristic decorrelation time is of order of one hundred time steps
(see the green curve in Fig. 2a).

Assuming that sω(x, t) is the stochastic parameterization tendency constructed in the physical space, its
(u, p)-representation analogue will have the following form

(su1 , s
u
2) = (−

∂
∂x2

, ∂
∂x1
) ∆−1sω (x, t) .

4.2 Negative viscosity approach

Let us follow [15, 31] and write down spectral linear viscosity model in the Fourier space

∂ωk
∂t = ⋅ ⋅ ⋅ − ν (k) k

2ωk (4.6)

where ν (k) is the eddy viscosity parameter. The net energy balance from this linear term can be written as

⟨
∂Ek
∂t ⟩ = ⋅ ⋅ ⋅ − ν (k) ⟨ω

∗
kωk⟩ .
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With negative value of eddy viscosity parameter (ν (k) < 0)we can describe missing energy generation in
the model. For the sake of direct comparability between this approach and the stochastic one we define the
eddy viscosity as

ν (k) = −⟨
∆Ek
∆t ⟩/⟨ω

∗
kωk⟩

where the energy generation spectra (⟨∆Ek/∆t⟩) is taken from the stochastically driven models and the solu-
tion power spectra (⟨ω∗kωk⟩) is obtained from the coarse model.

4.3 Scale-similarity parameterization for the coarse model

For the numerical experiments with coarse models we have used scale-similarity parameterization which is
slightly different from equation (3.8). For the (u, p) representation we have:

σui = −Csimδxj l̂
u
ij , luij = ũ

h
j u

h
i − ũ

h
j ũ

h
i (4.7)

where uhj is the velocity in coarse model. The width ∆f /h of test filter (̃⋅) was chosen equal to 2 (a = 1/6 in
equation (3.6)). Here we introduced additional spectral filtration (̂⋅) of the tensor luij that removes all scales
smaller than 0.9kf (k > 0.9kf ). This filtration is required to avoid spurious dissipation at small scales (see
Fig. 3, large wave numbers). Analogous parameterization in terms of streamfunction–vorticity variables is:

σω= − Csimδxj l̂ωj , lωj =ũ
h
j ωh − ũ

h
j ω̃h . (4.8)

The Csim constant must be different from the one calculated in Subsection 3.3 as it was obtained for the
DNS data and cannot be used for the coarse models having sufficiently different small scale dynamics. Fol-
lowing values of Csim for different schemes were chosen to equalize total energy generation of model (4.7),
(4.8) to that of models (4.1) and (4.6): 4.1, 1.5, 2.3, 2.6 for schemes E, INMCM, Z, and CCS, respectively.

4.4 Combined stochastic and scale-similarity parameterization

The last parameterization testedhere is the combinedmodel,which is a linear combination of scale-similarity
approach (4.7), (4.8) and stochastic one (4.1):

σui = Cstochs
u
i − Csimδxj l̂

u
ij (4.9)

σω = Cstochsω − Csimδxj l̂ωj . (4.10)

Specific approach for calculation of constants Cstoch and Csim will be described below.

5 Numerical experiments and results
In this section we present numerical results onmodelling 2D isotropic turbulencemodel based on the system
(2.1). We integrate (2.1) using 4 different advection schemes (i.e., E, INMCM, Z, and CCS) starting from zero
initial conditions until the statistical characteristics of model solution reach an equilibrium (the characteris-
tic time scale of intermittent behavior is around 200 time units). During the next 1000 time units we collect
statistics of the model solution for further comparison. As it was mentioned before, the spatial resolution of
these numerical experiments is 360 × 360 and the forcing driving the system has characteristic length cor-
responding to wave number 90 (four mesh steps of coarse model). Together with the bare coarse model run
for each numerical scheme we repeat the integration supplementing the model with one of the four parame-
terizations – pure stochastic KEB parameterization (Subsection 4.1), negative eddy viscosity (Subsection 4.2),
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(a) (b)

(c) (d)

Fig. 4: The equilibrium power spectrum of the solution at coarse resolution obtained for 4 different numerical schemes ((a) –
scheme E, (b) – scheme INMCM , (c) – scheme Z, (d) – scheme CCS): without parameterization (dark blue), stochastic param-
eterization only (red), negative viscosity parameterization (yellow), scale-similarity parameterization (light blue), stochastic
parameterization and scale-similarity tendency (green). The equilibrium power spectrum of the DNS solution is shown by black
curve.

Fig. 5: The same as in Fig. 4, but energy spectrum is compensated (i.e., multiplied by the factor of ε−2/3k5/3).
similarity (Subsection 4.3) and combination of scale-similarity + stochastic approaches (Subsection 4.4). In
all experiments with the stochastic KEB parameterization we use the same energy generation spectrum ob-
tained for scheme Z in the a priori analysis, see Subsection 3.2 and Fig. 2b.
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(a)

(b) (c)

(d) (e)

Fig. 6: The snapshot of the model solution (streamfunction) for DNS (a) and for the coarse model based on the scheme E with-
out backscatter (b), with stochastic (c), negative viscosity (d) or combined parameterization (e).

In Figs. 4 and 5 one can see the energy spectra and their compensated counterparts (i.e., the ones scaled
by the factor ε−2/3k5/3 ) of the coarse models in comparison with the reference DNS data represented by
the same black curve in all plots. Subfigure (a) demonstrates the case of E scheme. Subfigures (b), (c), and (d)
present thedata for INMCM, Z, andCCS schemes, respectively. On eachplot darkblue curve stands for thebare
coarse model run while red one represents coarse model with stochastic parameterization (4.1), yellow curve
shows the coarse model with negative viscosity parameterization (4.6), light blue line is the coarse model
with scale-similarity parameterization (4.7), (4.8) and green line is the case where combined deterministic-
stochastic approach (4.9), (4.10) is used.

According to the a priori analysis of subgrid forces they should transfer 55% of the forcing power to the
scales larger than forcing scale. Actual transfer for stochastic parameterization in coarse models is slightly
less (45%) due to inaccuracy of estimate (4.5). Due to this parameterization the energy of the largest scales
with (1 < k ⩽ 5) becomes almost the same as the one in DNS (the total energy raised almost 4 times for the
worst E scheme). In the middle scales (5 < k < 90) coarse models still have reduced energy values. Further
increase of the stochastic forcing do not change the dynamics qualitatively – almost all additional energy
goes to the largest scales making them unrealistically strong and leavingmiddle scales damped. Particularly,
one needs to increase value of stochastic parameterization at least in four times to reach the required level of
the middle scale energy in coarse models.

The effect of applying the negative viscosity parameterization looks almost identical but it has an addi-
tional disadvantage. Sometimes negative viscosity could be a source of exponential growth of the solution.
For instance, we have documented this effect for the scheme Z when the amplitude of small vortices at the
forcing scales grows uncontrollably. Spurious rise of small vortices due to negative viscosity approach was
also mentioned in [27].

The scale-similarity parameterization (4.7), (4.8) cannot provide enough energy to large scales in most
cases. However it effectively corrects power spectrum at middle scales (see light blue lines in Fig. 5). It is
natural to suppose that the improved parameterization of KEB can be achieved using combined approach
(4.9), (4.10). While the stochastic subgrid model corrects the large scale motions, the scale-similarity model
restores the middle scales. The optimal values of the coefficients Cstoch and Csim should be chosen individu-
ally for a given spatial resolution and numerical scheme of a coarse model. By varying these coefficients we
have achieved the coincidence of the energy spectra for all four coarse models (green lines in Figs. 4 and 5)
with DNS data (black lines) in the range (1 < k < 40). Values of Cstoch and Csim are (1.25, 1.7), (0.79, 1.4), (0.76,
2.5), and (0.43, 4.0) for E, INMCM, Z, and CCS schemes, respectively. Under this choice of coefficients, the total
energy generation produced by the combined parameterization appears to be nearly equal to the energy dis-
sipation caused by biharmonic viscosity. Also the spectral density in the inertial energy range increases up
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(a) (b)

Fig. 7: Autocorrelation functions for Fourier components of vorticity (a) and advection (b) for wave number 30 obtained with
the coarse model using scheme E: without parameterization (blue), stochastic parameterization only (red), negative viscosity
parameterization (yellow), stochastic parameterization and scale-similarity tendency (green). Results for the DNS solution are
shown by black curves.

(a) (b)

(c) (d) (e) (f)

Fig. 8: Forcing perturbation (a) and correspondent time averaged response (stream function field) of the DNS model (b). Bottom
row: coarse model (scheme E) response errors with respect to the DNS model response: bare coarse model (c), models with
stochastic (d), negative viscosity (e) and combined (f) parameterization included.

to the level comparable with the one defined by the known evaluations of Kolmogorov constant Cf ∼ 6 ± 0.5
(see, e.g., [11]), which is much larger than the level provided by the stochastic or negative viscosity param-
eterizations (Cf ∼ 3 − 4, red and yellow curves in Fig. 5). Two schemes (E and INMCM) correctly reproduce
deviations of the spectra from the −5/3 power law almost everywhere in the range of wavenumbers left to the
external forcing scale (see discussion in [9] for physical reasons of these deviations). Note that in the present
paper we do not propose any formal algorithm for calculation of Cstoch and Csim but simply show that the
appropriate choice is possible.

It was checked (the results are not presented here) that the similar way of KEB parameterizations can be
used to improve the spectra of coarse models with higher resolution (i.e., 540×540) where the level of initial
errors is smaller (see [45]).

In Fig. 6a we show a typical snapshot of the DNSmodel streamfunction. Coarse model (based on scheme
E) has almost zero large scale component (see Fig. 6b). Inclusion of stochastic term or negative viscosity
improves the structure of the flow (see Fig. 6c and 6d). Combined approach (see Fig. 6e) gives the best results.
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Tab. 1: Relative error of the averaged streamfunction response of the coarse models onto the perturbation. Level of significance
is 0.04. ||⟨ψ⟩ − ⟨ψDNS⟩||∞/||⟨ψDNS⟩||∞ ||⟨ψ⟩ − ⟨ψDNS⟩||2/||⟨ψDNS⟩||2
Parameterization/Scheme E INMCM Z CCS E INMCM Z CCS

bare coarse model 0.83 0.47 0.68 0.58 0.44 0.30 0.39 0.37
stochastic 0.13 0.08 0.09 0.10 0.13 0.11 0.10 0.11
negative viscosity 0.17 0.09 unstable 0.11 0.19 0.13 unstable 0.14
stochastic+similarity 0.07 0.08 0.05 0.05 0.11 0.10 0.07 0.08

Another important statistical property of themodel is the lagged auto covariance function characterizing
rate of anomaly decorrelation in the system. In Fig. 7 we present the lagged auto correlation for the Fourier
components (k = 30, middle scales) of vorticity ωk (left frame) and advection term Jk = −(u⋅∇ω)k (right
frame). From Fig. 7 it follows again that stochastic parameterization improves characteristic variability times
in the model and the shape of the lagged correlations. Reduction of these time scales could be due to the
emergency of the large scale advection. With combined approach the middle scale dynamics gets another
improvement.

For the climate modelling problems we would like to use models having the same sensitivity properties
as the real climate system. At least it is crucially important for the climate change forecast when the system
reaction on external forcings has to be predicted. Therefore, it would be very desirable for the coarsemodel to
have the same sensitivity as the DNSwhich is very nontrivial requirement [2]. To compare response properties
of the coarsemodels and DNSwe apply a small (with respect to advective term) constant in time perturbation
to the right hand side of (2.1):

∂ω
∂t = ⋅ ⋅ ⋅ + 0.09 ⋅ exp(−70 ⋅ [(x1 − π)

2 + (x2 − π)2]). (5.1)

The response was calculated using averaging over 24000 time units. The perturbation (a), DNS response (b),
and coarse model (scheme E) response errors (c)–(f) are shown in Fig. 8.

Coarse models without parameterization (see Fig. 8c) give the errors comparable with the reference DNS
response (see norms of these errors presented in Table 1). The use of the stochastic parameterization improves
response (see Fig. 8d) and reduces the norms of errors (Table 1). Model with negative viscosity parameteriza-
tion (see Fig. 8e) gives worse results compared to the stochastic one. Combined parameterization (see Fig. 8f)
gives almost perfect results both for the maximum (|| ⋅ ||∞) and root mean square (|| ⋅ ||2) response values.

6 Conclusions
In the present paper we considered several approaches to themodelling of large scale dynamics produced by
the forced isotropic two-dimensional turbulence. As a particular problemwe analyze stationary bidirectional
energy and enstrophy cascade in the viscous incompressible fluid with the energy dissipation at large scales
provided by the Rayleigh friction.

When the spatial scale of generating energy source is close to the grid step (the mesh is supposed to
have relatively coarse resolution) numerical models are unable to reproduce backward energy cascade and
the amplitude of large scales correctly. The main reason of this error is due to the fact that essential part
of the backward cascade at large and medium scales is supported by triad interactions involving unresolved
scales or small scalesmisrepresented by the numerical schemes. Typical way to correct coarse grid numerical
models is to use one or another subgrid parameterization for backward redistribution of kinetic energy (or
kinetic energy backscatter, KEBs).

First, we verified the standard approaches to model KEBs, namely stochastic parameterization (SKEBs)
and linear subgrid model using the negative viscosity approximation. These two parameterizations were
tested for four numerical approximation schemes having different number of quadratic invariants. Param-



P. A. Perezhogin, A. V. Glazunov, and A. S. Gritsun, Kinetic energy parameterizations | 211

eters of the subgrid parameterizations took into account results of high resolution (DNS) simulation and
specifics of the particular numerical scheme used in the model. We have shown that subgrid models indeed
help to increase the energy of large scales and make it close to the one in DNS. In addition, the autocorrela-
tion functions of model variables as well as response properties of coarse models to external perturbations
were all improving. On the other hand, one common problem still exists – both subgrid models are unable
to translate enough energy to middle scales preventing better correspondence of large and middle scales
statistics with respect to DNS. Also, the negative viscosity model produces numerical instability for one of
the approximation schemes.

Further improvements could be obtained when we complement SKEBs with the deterministic nonlinear
subgrid parameterization aimed to improve dynamics atmiddle scales. This parameterization is based on the
so-called scale-similarity hypothesis widely used in large eddy simulations of 3D turbulent flows. The a priori
analysis of the DNS solution has shown that it produces energy generation in middle scales similar in shape
to the one produced by the subgrid forces estimated for one or another approximation scheme. It was found
that the scale-similarity model is overly dissipative at small scales and must be filtered out at this spectral
region. As a result, with the proper choice of coefficients regulating amplitude of the stochastic and nonlinear
deterministic parameterizations, one can obtain almost exact correspondence between the energy spectra
of DNS and coarse resolution models. In addition, the characteristic times of large and middle scales were
improved in all coarsemodels as can be seen from the shapes of the auto correlation functions. Coarsemodels
equipped with the combined parameterization have almost the same sensitivity to external perturbations as
the high resolution model that is very useful for climate modelling and climate change problems.

We should also mention several potential disadvantages of the suggested approach. First, we have to ad-
just the set of parameters for every particular numerical approximation scheme used in the model. Second,
we used Fourier space (and Fourier transform) for constructing subgrid parameterizations making it difficult
to directly apply our results to spatially non isotropic case (boundary currents, rotation etc.). Possible ways
to remove (or reduce) these difficulties could be the use of the discrete filters with compact support and sim-
plified stochastic parameterization. In turns, parameters of the combined closure could be estimated using
dynamic procedure from [25].

Funding: This work was supported by the Russian foundation for Basic Research (projects 16-55-12015, 18-05-
60126, 18-05-60184).
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