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Abstract: In the present work the possibility of turbulence closure applying to improve barotropic jet insta-
bility simulation at coarse grid resolutions is considered. This problem is analogous to situations occurring
in eddy-permitting ocean models when Rossby radius of deformation is partly resolved on a computational
grid. We show that the instability is slowed down at coarse resolutions. As follows from the spectral analysis
of linearized equations, the slowdown is caused by the small-scale normalmodes damping arising due to nu-
merical approximation errors and nonzero eddy viscosity. In order to accelerate instability growth, stochastic
and deterministic kinetic energy backscatter (KEBs) parameterizations and scale-similarity model were ap-
plied. Their utilization led to increase of the growth rates of normal modes and thus improve characteristic
time and spatial structure of the instability.
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The characteristic spatial scale of geophysical flows is determined by the Rhines scale where, under the in-
terplay of turbulence and Rossby waves, jet currents occur [34, 39]. This scale for the ocean is approximately
an order less than for the atmosphere [34]. Due to this reason, numerical ocean models used in climate re-
search usually resolve mesoscale variability just partly instead of the atmosphere models [12]. These ocean
models are called ‘eddy-permitting’ models. Thus, the development of efficient numerical solvers taking into
consideration both unresolved turbulence and numerical schemes is primarily necessary for the numerical
ocean models. In [30] and [33] we evaluated numerical schemes and turbulence closures in developed 2D
turbulence simulation. This work extends our studies to the case of transition to turbulence.

In this work, we consider large eddy simulations (LES) [10] of quasi-2D geophysical flows. This method-
ology implies that the most energetic eddies responsible for the main features of the flow are reasonably
resolved on the computational grid. To make equations for the resolved scales closed, we have to construct
subgrid scale (SGS) closure (or SGS parameterization) which models in some way influence of unresolved
scales on resolved ones. In general, construction of closures for 2D turbulence is rather more sophisticated
than for 3D turbulence since inviscid dynamics in 2D case possesses infinite set of invariants called Casimirs
[11, 31, 32, 35]. One of Casimirs is enstrophy (squared vorticity). It plays the major role in ability of 2D tur-
bulence to transfer energy to large scales. SGS closures for the quasi-2D turbulence are usually based on
the KLB (Kraichnan-Leith-Batchelor) theory [5, 23, 24]. This theory predicts redistribution of the enstrophy
and kinetic energy into small and large scales, respectively. Thus, we mention two major groups of parame-
terizations approximately satisfying these properties. Eddy viscosity models (EVM) [19, 38] describe enstro-
phy transfer from resolved scales to unresolved ones. Kinetic energy backscatter (KEB) parameterizations
[6, 9, 14, 15, 21, 22, 36, 37, 40] inject energy into the resolved scales. The property of the energy redistribution
into large scales is equivalent to conservation of energy by resolved flow. It can be satisfied by combining EVM
and KEB parameterizations in such a way to energy of resolved flow to be conserved (‘energetically consis-
tent’ KEB [21, 22, 40]). SS (scale-similarity, [4]) model can be viewed as alternative SGS model which utilizes
similarity between scales to construct nonlinearmodelmimicking redistribution of energy and enstrophy be-
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tween resolved and unresolved scales [33]. It is extensively used in 3D turbulence simulations [18], but in 2D
turbulence there are only a few examples [7, 28, 33].

Wehave testedmentionedabove SGSmodels inhomogeneous 2D turbulence in [33] andhave shown them
to improve statistical features of large scales. Bearing inmind that developed turbulence andquasi-stationary
laminar jet currents coexist together in the ocean, they are both influenced by the same SGS closure. Thus, it
is of substantial interest for us to know how do these closures work at the laminar-turbulent transition (LTT)
of jet current when barotropic instability develops. Although baroclinic instability is the primary mechanism
of the jet currents destruction in the ocean [13], we investigate here barotropic instability since KEB closures
are designed to capture properties of barotropic turbulence. For our knowledge, SGS closures have never been
tested in 2D LTT. Also, we notice that in contrast to developed turbulence where fully non-linear dynamics
occurs, barotropic instability canbe treated in linear approximation,which allowsus to give simple analytical
considerations about SGS models properties.

Simulation of barotropic jet instability is widely used for testing of global atmospheric numerical models
in shallow water approximation [16]. In this benchmark, barotropic instability is initiated by the Gaussian
perturbation in the height field, and the resulting solutions are used to evaluate convergence properties of
numerical schemes.We notice that this setting is not suitable for the SGS closures testing since these closures
capture only statistical properties of unresolved scales and there is no guaranty for them to improve predic-
tion skill of the coarse model. For this reason, we have developed a framework for the statistical analysis of
barotropic instability simulation.

In this work, we study barotropic instability simulation at coarse resolutions of the computational grid.
We consider one-layer barotropic equations in a doubly-periodic channel, using unstable jet current as the
initial condition. Instability is initiated by the white noise in time stochastic forcing simulating the effect
of the atmosphere on the ocean. Using statistical averaging over an ensemble of realizations of stochastic
forcing, we decompose the flow into the mean flow and the turbulent fluctuations. Turbulence Kinetic En-
ergy (TKE) and its distribution over normal modes were chosen to be the primary statistical properties of the
barotropic instability. For themodels with coarsemesh resolution, we show the reduction of the growth rates
of normal modes compared to reference simulation at high resolution. There are two reasons for this: strong
eddy viscosity and numerical schemes used. Eddy viscosity turns out to be themain reason for the slowdown
of instability growth since it smooths out the jet current. We propose to use negative viscosity and stochastic
KEB parameterizations [21] and scale-similarity model (SS) [4] to restore statistical properties of barotropic
instability. Application of these parameterizations leads to acceleration of instability growth in three different
ways. So, negative viscosity KEB [21] increases the growth rates of normal modes by modifying mean flow,
stochastic KEB [21] increases their pre-exponentials and SS model increases growth rates by modifying lin-
earized system. Different mechanisms of negative viscosity KEB and SS models allows us to combine them
together which gives growth rates in coarse model the most close to ones found in reference simulation.

1 Governing equations
Consider a 2D incompressible fluid on a channelΩ = (0, 2π)2 with Cartesian coordinates (x, y) ≡ (x1, x2) ∈ Ω
anddoubly-periodic boundary conditions. The velocity field,u = (ux , uy)T ≡ (u1, u2)T , T – transpose, evolves
according to the equations:

∂u
∂t + (u ⋅ ∇)u = −∇p + D + F (1.1)

∇ ⋅ u = 0 (1.2)

where p is the kinematic pressure, ∇ = (∂/∂x, ∂/∂y)T is the Nabla-operator, D is the small-scale dissipation
supplied by the eddy viscositymodel (EVM) and F is the external stochastic forcing. Let us introduce vorticity
ω = ∂uy/∂x − ∂ux/∂y and stream function ψ satisfying the relation ω = ∆ψ, where ∆ = ∇ ⋅ ∇ is the Laplacian
operator. Then velocity is given by u = ( − ∂ψ/∂y, ∂ψ/∂x)T .
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As an initial condition, we take unstable jet solution proposed in [16] with slight modifications:

ux|t=0 = exp(
π2

2σ2
) ⋅ exp [ π

4

2σ2
⋅

1
y(y − 2π)] (1.3)

uy|t=0 = 0. (1.4)

For the convenience, also the spatial average is subtracted (not shown in formula). The velocity field (1.3)
is infinitely differentiable in Ω and defined to be zero at the boundaries y = 0, y = 2π. Velocity takes its
maximum value equal 1 at the center of the channel (y = π). Let us notice that velocity profile (1.3) is quasi-
Gaussian since expanding expression in square brackets in Taylor series at the y = π, we obtain the Gaussian
with variance σ2:

exp [ π
4

2σ2
⋅

1
y(y − 2π)] = exp [ −

π2

2σ2
−

1
2σ2
(y − π)2 + O((y − π)4)].

1.1 Numerical methods

Numericalmethodsusedare implemented in thepackage [27]. Spatial computational grid is uniformand stag-
gered with mesh step h. Arrangement of variables corresponds to Arakawa ‘C’ grid, i.e., pressure is placed
in the center of the computational cell, i.e., its coordinates with respect to the left-bottom cell corner are
(h/2, h/2), vorticity and stream function are located in the corner (0, 0) while velocities are specified in the
middles of the edges, u in (0, h/2) and v in (h/2, 0). Time step ∆t satisfies Courant–Friedrichs–Lewy con-
dition (CFL= Umax∆t/h < 0.2). Equations (1.1), (1.2) are solved using projection method [8] with temporal
approximation according to Adamsh–Baschforth rule (for any φ):

φn+1/2 = 3
2
φn − 1

2
φn−1 (1.5)

where n is the number of time layer.We apply central difference scheme to the advection termwhich is energy-
conserving provided the proper numerical analogue for the continuity equation is chosen [26] (here and be-
low, summation is assumed for the repeating indices i, j = 1, 2):

∂(uiuj)
∂xj
≈ δxj (ui

xjuj xi ) (1.6)

where the following operators are used:

δxiφ =
φ(xi + h/2) − φ(xi − h/2)

h , φxi = φ(xi + h/2) + φ(xi − h/2)
2

. (1.7)

1.2 Eddy viscosity model (EVM) and external forcing

We use EVMmodel [19] based on the biharmonic operator,

Di = −2 ⋅
∂
∂xj
(ν∆Sij) (1.8)

with Smagorinsky-like viscosity coefficient ν = Csmagh4|S|, Csmag = 0.06 (see [22]), Sij = 1
2 (∂ui/∂xj + ∂uj/∂xi)

is the strain tensor and |S| = √2SijSij is its modulus.
The external forcing F simulates an influence of the atmosphere on the ocean in the mesoscale atmo-

spheric range where energy spectrum slope is −5/3 (see [29]). Each time step, we generate stream function of
‘atmospheric flow’ψF(x, y) in Fourier spacewith the following energy (E = 1

2 ∫ |∇ψ|
2dΩ = ∫ E(k)dk) distribu-

tion over wavenumbers: E(k) = k−5/3 exp[−(k/kF)8], where kF is the wavenumber of cutting off introduced to
ensure the fast convergence of statistical featureswith the increase of resolution. Fourier coefficients ofψF are
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chosen to be uncorrelated discrete-time white noises under the assumption that atmospheric time scales are
small enough. GivenψF, we compute the ‘atmospheric’ velocity field (uFx , uFy ) = (−∂ψF/∂y, ∂ψF/∂x) and then
preliminary forcing, fi = uFi |u

F |, via bulk formula for turbulent drag. Spatial average and divergent part of f
are subtracted. Introducing amplitude A, we can control forcing power. Numerical integration of the forcing
with forward Euler method gives a simple expression for the energy input [1]:

Fi = Afi (1.9)

⟨
∂|u|2/2
∂t ⟩ = ⋅ ⋅ ⋅ +

∆t
2
⟨F21 + F

2
2⟩ = ⋅ ⋅ ⋅ +

A2∆t
2
⟨ f 21 + f

2
2 ⟩ (1.10)

where brackets ⟨⋅⟩ stand for ensemble averaging. In program we simply use spatial averaging as unbiased
estimator of ensemble averaging since fi are identically distributed in each mesh node.

1.3 Simulation parameters

Equations (1.1), (1.2) are integrateduntil t = 25 for the ensemble consistingof 100 realizations of the stochastic
external forcing. We adjust the forcing amplitude A to provide energy input at a rate of 1% of initial energy
during the full integration time. The reference model has resolution 512 × 512. Model with intermediate
resolution (128 × 128) is used to show the convergence of statistics. Turbulence closures are analyzed for
coarse-resolution models (32 × 32, 64 × 64). The external forcing (F) and initial conditions (1.3) are well
resolvedon the computational grids: cutting offwavenumber forF is kF = 8which is twice less thanmaximum
resolved wavenumber for the coarsest grid 32 × 32 (kmax = 16). A width of the initial jet is 2σ = 1/2. Bearing
in mind Fourier transform of Gaussian distribution, |𝔽(ux|t=0)|2 ∼ exp[−k2yσ2], cutting off wavenumber for
the initial jet is ky = 4 which is again less than kmax.

2 Statistical properties of barotropic instability
The stochastic forcing F allows for the introducing of ensemble averaging over its realizations denoted by
angle brackets, ⟨⋅⟩. Using ensemble averaging, we decompose the velocity field, u, into the mean flow, ⟨u⟩,
and the turbulent fluctuations, u, what is also known as Reynolds decomposition:

u = ⟨u⟩ + u. (2.1)

Our main goal is to introduce statistical characteristics of turbulent fluctuations suitable to analyze solutions
to the equations (1.1), (1.2). For this reason, we will consider approximate linear equations for u derived
under the assumptions that turbulent fluctuations are small (i.e., nonlinear terms (u ⋅ ∇)u are negligible)
and viscosity is negligible (inviscid limit). These two assumptions ensure that the mean flow is stationary,
i.e., ⟨u(t)⟩ = u(0), where u(0) is given by (1.3), (1.4). Bearing in mind that Eddy viscosity model (1.8) depends
on the mesh step, we conclude that inviscid limit corresponds to the infinitely high resolution.

To perform linearization, we write out ‘barotropic vorticity equation’ equivalent to (1.1), (1.2), see [35],
and neglect viscosity:

∂∆ψ
∂t + J(ψ, ∆ψ) = fω (2.2)

where J(ψ, ∆ψ) = −∂ψ/∂y ⋅ ∂∆ψ/∂x + ∂ψ/∂x ⋅ ∂∆ψ/∂y is the Jacobian and fω = ∂Fy/∂x − ∂Fx/∂y is the
stochastic forcing F in vorticity representation. Substituting decomposition ψ = ψ0 + ψ, where ψ0(y) is the
initial flow (1.3), (1.4) in stream function representation, into (2.2) and neglecting nonlinear terms, we come
to the linear equation for the turbulent fluctuations:

∂ψ

∂t = A(y)ψ
 + fψ (2.3)
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Fig. 1: Eigenvalues of matrix H for kx = 1 and different Ny .

where
A(y) = [∆−1(dψ0(y)

dy ∆ − d
3ψ0(y)
dy3
)
∂
∂x ]ψ



and fψ = ∆−1fω is the stochastic forcing in stream function representation. Here we assume that all functions
belong to linear subspace of functionswith zero integral value, i.e., for anyφ(x, y)wehave∫φ(x, y)dxdy = 0,
where Laplace operator ∆ is invertible. Solution to equation (2.3) is dominated by the most fast-growing nor-
malmodes excited by the stochastic external forcing. As themain statistical property of barotropic instability
arising in equations (1.1), (1.2), we have chosen some norm of the normal modes found in turbulent fluctua-
tions.

2.1 Numerical solution of an eigenvalue problem

We start with eigenvalue problem A(y)Ψ(x, y) = λΨ(x, y) which can be simplified taking into consideration
that A(y) is independent of x. Separating variables, Ψ(x, y) ≡ Ψ(y)eikxx, where i is the imaginary unit, kx ∈
ℤ \ 0 (kx = 0 corresponds to trivial stationary modes), we come to the 1D eigenvalue problem for Ψ(y):

(
d2

dy2
− k2x)
−1
(
dψ0(y)
dy (

d2

dy2
− k2x) −

d3ψ0(y)
dy3
)ikxΨ(y) = λΨ(y). (2.4)

Eigenvalue problem (2.4) has been solved numerically. Let us introduce uniform mesh along y direction
with Ny nodes and step hy = 2π/Ny. Coordinates of nodes are:

yj = jhy , j = 0, . . . , Ny − 1. (2.5)

Approximation of d2/dy2 using second-order finite differences is denoted as matrix L, unit matrix as E. Ma-
trices M1 and M2 are defined as follows: M1 = diag(dψ0(y)/dyyi ) and M2 = diag(d3ψ0(y)/dy3yi ). Then
finite-difference analogue of (2.4) is

H(kx)Ψ = λΨ, Ψ ∈ ℂNy , H(kx) ∈ ℂNy×Ny (2.6)

where matrix H depends on the kx as follows: H(kx) = (L − k2xE)−1(M1(L − k2xE) − M2)ikx. For kx ∈ ℕ we
solve full eigenvalue problem (2.6). Convergence of leading eigenvalues, i.e.,max(Re(λ)), with respect to the
number of mesh nodes Ny is shown in Fig. 1 for kx = 1. For other kx pictures are similar. Eigenvalues with
Re(λ) > 0 are separated from the rest spectrum and thus they are simple eigenvalues. Due to the special
structure of the matrix H (Re(H) = 0), these eigenvalues occur in pairs, HΨ = λΨ and HΨ = −λ Ψ (overline
stands for the complex conjugate), and it is seen in Fig. 1. For negative wavenumbers kx, eigenvectors are the
same and eigenvalues are simply −λ since H(−kx) = −H(kx). Finally, real-valued normalmodes are composed
of two eigenvectors (H(kx)Ψ = λΨ and H(−kx)Ψ = λ Ψ) and have the following form:

Ψ(y)eikxxeλt + Ψ(y)e−ikxxeλt ≡ 2Re(Ψ(y)eikxxeλt). (2.7)
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kx = 1 kx = 2 kx = 3

Fig. 2: The most excited in the numerical experiments normal modes of A(y) in vorticity representation (real-valued part). The
minimum value is in black, the maximum value is in white.

Tab. 1: Growth rates of normal modes for different kx .

kx 1 2 3 4 5

2Re(λ) 0.5704
0.2732

0.9861
0.3414

1.0539
0.0864

0.7949 0.2682

Normalmodes are calculated inmeshwithNy = 2048. Among all kx ∈ ℕ, spectrumof A(y)has 8 growing
(Re(λ) > 0) normal modes. Growth rates of energy (2Re(λ)) are given in Table 1. The most excited in the
numerical experiments normal modes are in bold and shown in Fig. 2. They consume large energy from the
external forcing or have huge enough growth rate, as will be shown in Section 2.3. Below we will work with
these three normal modes, identifying them by the wavenumbers (kx = 1, 2, 3) or by the ordinals (1st, 2nd,
3rd mode).

2.2 Projection onto a normal mode

Our goal is to project turbulent fluctuations u (see (2.1)) found in numerical solutions of the nonlinear equa-
tions (1.1), (1.2) onto the subspace spanned by the desired normal mode of (2.3) to track its excitation. The
projector we constructed is spectral in the sense that it projects parallel to invariant subspace of the matrix
H(kx).

Now let us get real-valued ψ(x, y) in numerical experiment. Firstly, we perform Fourier expansion in
x-variable:

ψ(x, y) = ∑
kx∈ℤ

ψkx (y)e
ikxx . (2.8)

Relation excluding complex-valued solutions is the following: ψ−kx (y) = ψ

kx (y). That is why we restrict our-

selves to the case kx > 0. Subspaces corresponding to different kx are invariant and moreover orthogonal
with respect to L2(Ω) inner product. We exclude x-dependence performing orthogonal projection which is
spectral itself:

ψkx (y)e
ikxx = eikxx 1

2π ∫ψ
(x, y)e−ikxxdx. (2.9)

Now let ψkx be a vector representing function ψ

kx (y) on a uniform vertical grid (2.5). For leading eigenvalue

λ corresponding to given kx we find two eigenvectors: H(kx)Ψ = λΨ and H∗(kx)Ψ̃ = λΨ̃ (or equivalently
left eigenvector), where ‘∗’ stands for the conjugate matrix transpose. Left eigenvector is known to perform
spectral projection:

Ψ̃∗ψkx
Ψ̃∗Ψ

Ψ. (2.10)
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Fig. 3: Left column: normal mode Ψ(x, y) and its projector Ψ̃(x, y). Right column: the same, but in vorticity representation. Real-
valued parts. Corresponds to leading eigenvalue for kx = 1. The minimum value is in black, the maximum value is in white.

Finally, to show the resulting projection operator, we change inner product onmesh (2.5) with L2(0, 2π) inner
product (it is reasonable since the former multiplied by mesh step hy is the approximation of the latter),
associate functions Ψ(x, y) ≡ Ψ(y)eikxx, Ψ̃(x, y) ≡ Ψ̃(y)eikxx with vectors Ψ , Ψ̃ and apply consequently (2.9)
and (2.10):

ψ(x, y)→ 2Re(
∫ Ψ̃(x, y)ψ(x, y)dΩ

∫ Ψ̃(x, y)Ψ(x, y)dΩ
Ψ(x, y)) . (2.11)

Normal modes of (2.3) are of interest to us. So, we use maximum available resolution Ny = 2048 to
find Ψ(x, y) and Ψ̃(x, y) and then interpolate them to the grid of the nonlinear model (1.1), (1.2). After that, all
integrals in (2.11) are found numerically using simple rectangle rule. FunctionsΨ(x, y) and Ψ̃(x, y) are shown
in Fig. 3, Ψ̃(x, y)has very tiny spatial structure debatable for322 grid. So, it was decided to performprojection
in vorticity representation where projector ∆−1Ψ̃(x, y) and normal mode ∆Ψ(x, y) are smooth together, see
right column in Fig. 3.

2.3 Growth-law for a normal mode

Projecting equation (2.3) onto the subspace spanned by the normal mode, we come to the following equation
for the coefficient of normal mode α:

dα = λαdt + σdW, α(0) = 0 (2.12)

where σdW is the projection of the stochastic forcing fψ onto the normal mode, σ > 0, W is the complex
Wiener process, i.e., ⟨dWdW⟩ = dt. Solving (2.12) for growing normal modes (Re(λ) > 0), we obtain the
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5122, t = 10.0 5122, t = 12.0 5122, t = 17.0

322, t = 10.0 322, t = 12.0 322, t = 17.0

 t = 0.0

Fig. 4: Vorticity in different instants of time. Reference model (5122) is in upper panel, coarse model (322) is in lower panel. The
minimum value is in black, the maximum value is in white.

following expression for α (see [2]):

⟨|α(t)|2⟩ = σ2

2Re(λ) (e
2Re(λ)t − 1). (2.13)

Let us define ensemble-averaged energy of the normal mode Ψ(x, y),

⟨E⟩ = ⟨|α|
2⟩

2 ∫
|2Re(∇Ψ)|2dΩ (2.14)

and energy input into normal mode from the stochastic forcing, ε = 1
2σ

2 ∫ |2Re(∇Ψ)|2dΩ. Then for the
ensemble-averaged energy of the normal mode, we have the following expression:

⟨E(t)⟩ = ε
2Re(λ) (e

2Re(λ)t − 1). (2.15)

For a long enough time (t ≳ 1/Re(λ)), the energy ⟨E(t)⟩ of the normal modes grows with growth rate 2Re(λ)
while the pre-exponential factor is proportional to the forcing power ε.

2.4 Overview of simulations with different resolutions

In this section,we consider howdo coarse-resolutionmodels fail to reproduce barotropic instability andwhat
are the main reasons for this.

We solve (1.1), (1.2) numerically for an ensemble of 100 realizations of the stochastic forcing using pa-
rameters given in Section 1.3. Solutions of reference (5122) and coarse (322) models for two particular but
different forcing realizations are shown in Fig. 4. The stochastic forcing excites normal modes which grow
exponentially until t ≈ 10.0 (in reference model) when turbulence starts. Instability grows slower in the
coarse model (322) and its spatial pattern also different. Thus, bearing in mind that normal modes are differ-
ent from each other in spatial pattern and growth rate, we conclude that at coarse resolution wrong normal
modes grow, i.e., the most excited normal modes in coarse and reference solutions are different. Later we
will show it precisely considering energy of normal modes separately. Let us notice that jet current is strongly
smoothed out in the coarse model. It is caused by eddy viscosity since mean current ⟨u⟩ (a function of y) is a
stationary solution and unaffected by our advection scheme at any mesh resolution.
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Fig. 5: Turbulence kinetic energy (TKE) (a) and TKE of normal modes kx = 1, 2, 3, respectively (b), (c), (d), in % of initial jet
energy. Blue, purple, green, and black lines are 322, 642, 1282, 5122 experiments, respectively. Red line corresponds to the
inviscid simulation at 322 resolution.

We introduce the notion of turbulence kinetic energy (TKE):

TKE = 1
2 ∫
⟨u2x ⟩ + ⟨u2y ⟩dΩ (2.16)

where u is the turbulent fluctuations, see (2.1). Angle brackets refer to averaging over an ensemble. By the
notion ‘normal mode TKE’ we mean TKE of turbulent fluctuations projected onto normal mode using (2.11).
In Fig. 5, for different resolutions, it is shown TKE (a) and TKE of normalmodes (b-d) in% of initial jet energy.
We notice convergence of these statistical characteristics with increasing of resolution.

First of all, let us describe results for the reference model (5122). At the initial stage of instability, the
TKE of normalmodes grows linearly in logarithmic scale (see Figs. 5b–5d). Solid black lines showexponential
growthwith rates given in Table 1. As one can see, the slope of the TKEof normalmodes in the referencemodel
is close to the theoretical predictions given by linearized model. Vertical bias of the TKE of normal modes in
logarithmic scale is determined by the pre-exponential factor, see (2.15), and depends on the value of the
projection of the external forcing onto the normal mode which is decreasing with wavenumber (spectrum
k−5/3). Thus, initially dynamics is dominated by the 1st normal mode (kx = 1), but later, fast-growing modes
(kx = 2, 3) become responsible for the transition to turbulence, whichwe define to occur at the bending point
of TKE of normal modes (t ≈ 12). Other normal modes mentioned in Table 1 have comparatively low energy
level due to small projection of forcing and/or low growth rate.

Coarse-resolution models (322, 642) show underestimated TKE level compared to the TKE level of the
reference model (5122) (see Fig. 5a). It is explained by the reduced growth of small-scale normal modes. As
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can be seen in Figs. 5b–5d, large-scale normal mode (kx = 1) is reasonably well reproduced by coarse models
while normal modes with smaller spatial scale (kx = 2, 3) are damped. Damped 2nd and 3rd normal modes
lead to wrong spatial structure and slowdown of instability as shown in Fig. 4.

Let us reveal the reasons for the fail of coarse models by considering two sources of errors: eddy viscosity
model (EVM)which smoothes out the solution andnumerical errors causedbyfinite resolution andnumerical
scheme. The influence of EVM was evaluated by performing additional inviscid integration of (1.1), (1.2) at
coarse resolution 322 without EVM model, see line ‘322 inviscid’ in Fig. 5. It follows from the figure that
inviscid simulation is much closer to the reference model (5122) compared to the viscid simulation (322),
especially in the 3rd mode TKE level. Thus, the main reason for the slowdown of instability is the EVMmodel
which can act in two ways: smoothing out the mean flow and reducing growth rates of normal modes of the
linearized system. Additional experiments with the linearized model has shown smoothing of the mean flow
to be crucial.

3 2D turbulence closures
In previous sections only EVM turbulence closure has been used. It must be applied in general circulation
models (GCMs) to ensure numerical stability of the simulation when enstrophy transfer to unresolved scales
occurs. As it was shown in previous section, turning off the EVMmodel can improve simulation of barotropic
instability. Extending of this procedure to GCMs can be performed applying dynamic closure [17]. However,
we are not familiar with works utilizing dynamic closure in GCMs. So, our strategy is to keep the EVMmodel
without modifications and to try additional turbulence closures.

Together with enstrophy, EVM model also dissipates energy, which is prohibited by the KLB theory. To
cure EVM models, ‘energetically consistent’ KEB parameterizations returning dissipated energy to the re-
solved scales have been developed [21, 22, 40]. Energy can be returned in a stochastic or deterministic way,
and both of them have shown good results in restoring a mean flow [21] and spectrum of TKE [21, 33]. Below
we will show that for the barotropic instability there is a substantial difference between the stochastic and
deterministic KEB parameterizations.

3.1 Negative viscosity KEB (neg. visc.)

This parameterization was introduced in [21]. We add the following term to the right-hand side of (1.1):

µ(t)∆u (3.1)

where µ(t) < 0 is chosen at each time step to compensate energy dissipation of the EVMmodel:

∫D ⋅ u dΩ + µ(t)∫ ∆u ⋅ u dΩ = 0 (3.2)

where D was defined in (1.8).

3.2 Stochastic KEB (stoch)

Another one KEB parameterization is similar to one used in [20, 21]. At each time step, we construct two
uncorrelated in space and with each other uniformly distributed on (0, 1) random fields s = (s1, s2) defined
in mesh nodes. Spatial mean and divergence are subtracted from these fields. Then we apply filter G(⋅) ≡
G1(G2(⋅)) = G2(G1(⋅)) 6 times, where for any φ:

Gi(φ) =
1
6
φ(xi − h) +

2
3
φ(xi) +

1
6
φ(xi + h). (3.3)
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According to [25], band width of 6 applications of filter (3.3) is ∆ = √6 ⋅ 2h ≈ 4.89h. So, we inject energy
into the scales slightly larger than dissipation scale of the EVM model which occurs the most extensively at
2h width. In [20] the fact that such filtration can also be viewed as a natural correction of the white-noise
in space Reynolds tensor (used to describe influence of unresolved scales of motion) for the second-order
numerical schemes is discussed.

After that, the fields (s1, s2) are substituted into the right-hand side of (1.1) and multiplied by the am-
plitude A (again, integrating using forward Euler method, the energy source is ∝ A2, see (1.10)) chosen to
compensate the total energy dissipation by the EVMmodel:

∫D ⋅ u dΩ + A
2∆t
2
⟨s21 + s

2
2⟩ = 0. (3.4)

3.3 Scale-similarity model (SS)

Also we test nonlinear model not of the KEB type, namely SS model [4]:

fi = −C
∂
∂xj
(ûiuj − ûi ûj) (3.5)

where (̂⋅) is filter (3.3) and C = 3.

3.4 Difference between these parameterizations

Stochastic KEB does not affect the mean flow ⟨u⟩ because of ⟨si⟩ = 0. Also, it cannot modify the linearized
system itself and thereby increase growth rates. Finally, the only impact from stochastic KEB is the exciting
of normal modes while the majority of incoming energy is stored in non-growing normal modes which are
not involved in the transition to turbulence. Negative viscosity KEB acts in another way. At the initial stage of
instability growth, energy is returned mainly into the mean flow ⟨u⟩ since |∆⟨u⟩ ⋅ ⟨u⟩| ≫ |∆u ⋅u|. Due to this
fact, the energy of the mean flow is approximately conserved what prevents excess smoothing of mean flow
and consequently increases the growth rates of normal modes.

SS model does not influence on jet current since (3.5) is zero for ui = U(y)δi,1, where δi,j is the Kronecker
delta. On the other hand, it modifies the linearized system and, as will be shown in numerical experiments,
the SS model increases the growth rates of normal modes.

4 Numerical experiments with KEB and SS parameterizations
We integrate equations (1.1), (1.2) again, adding into the right-hand side described above KEB and SS param-
eterizations. TKE characteristics for the model at resolution 322 are shown in Fig. 6. Negative viscosity and
SS closures improve growth of the 2nd and 3rd normal modes in a similar way while SS closure improves
the 1st normal mode slightly better. Bearing in mind that SS and negative viscosity closures act differently,
namely the former affects the turbulent fluctuations and the latter affects the mean flow, we applied them
together. Combined approach (neg.visc.+SS) substantially improves full TKE level and TKE of normal modes
(see Fig. 6). Nevertheless, the 3rd normal mode still has too little energy. Hence, the 2nd normal mode has
to grow longer, what slows down the transition to turbulence compared to the reference model. Solution
snapshot for the combined model is shown in Fig. 7. Comparing with lower panel of Fig. 4, one can see that
barotropic instability has acquired more correct spatial structure.

Results for the model at resolution 642 are shown in Fig. 8. Deterministic closures (neg. visc. SS and neg.
visc.+SS) almost does not change TKE of the 1st and 2nd normalmodes. The 3rd normalmode being too weak
in baremodel is greatly improved by the closures based on scale-similaritymodel (SS and neg. visc.+SS). Full
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Fig. 6: Turbulence kinetic energy (TKE) (a) and TKE of normal modes kx = 1, 2, 3, respectively (b), (c), (d), in % of initial jet
energy. Results are shown for the model at resolution 322. Blue line (‘bare’) is the experiment without additional parameteri-
zations. Red, purple, and green lines are the experiments with negative viscosity, scale-similarity, and combined (neg.visc+SS)
parameterizations. Black line is the reference computation for the model at resolution 5122.

t = 10.0 t = 12.0 t = 17.0

Fig. 7: Vorticity in different instants of time. Model at resolution 322 with combined (neg.visc.+SS) parameterization. The mini-
mum value is in black, the maximum value is in white.

TKE is also approaching the reference level for these twoclosures.As one can see inFigs. 8b–8d, the stochastic
KEB does not change the growth rates of normal modes but modify pre-exponential factors. Adjusting power
of the stochastic KEB, the transition to turbulence can be accelerated. Majority of incoming energy is stored
in non-growing normal modes that is why TKE level bias is large (see Fig. 8a). We do not show results for the
stochastic KEB at resolution 322 because non-growing normal modes are strongly excited and TKE level is
too different from the reference level.
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Fig. 8: The same as in Fig. 6, but for resolution 642. Additional light blue line is the experiment with stochastic KEB.

5 Conclusions
In the present work, the problem of numerical simulation of barotropic instability at coarse spatial resolu-
tions is considered. Instability is excited by the external stochastic forcing allowing for the introducing of
ensemble averaging. We focus on the initial stage of the barotropic instability when governing equations can
be linearized to perform normal mode analysis. We assess the quality of coarse models, studying the growth
of turbulence kinetic energy (TKE) and TKE of normal modes. We revealed the growth rates of normal modes
to be substantially reduced at coarse resolutions of themodel. It is due to numerical errors and eddy viscosity
model. The latter smoothes out jet current, and it was shown to be themain reason for growth rates reduction.

Further, we studied the possibility of restoring the growth of normal modes without changing the eddy
viscosity model. Three types of additional turbulence closures were considered: stochastic KEB, negative
viscosity KEB, and scale-similarity model (SS). These parameterizations affect solution differently.

Negative viscosity KEB mainly influence on mean flow, preventing its smoothing and thereby increasing
growth rates of normal modes. Scale-similarity model does not affect mean flow and modifies the linearized
system, increasing growth rates of normal modes. Thus, we managed to find turbulence closure effectively
changing the linear system itself. Given different principles of operation of these parameterizations, we com-
bine them. The combined closure demonstrated the best results at coarse resolutions (322, 642).

In contrast to the developed turbulence case [21, 33], the barotropic instability simulation is strongly sen-
sitivewhether KEB closure is stochastic or deterministic. In developed turbulence, turbulent fluctuations pre-
vail over mean flow, and any KEB returns energy into turbulent fluctuations where nonlinearity redistributes
themanalogously [33]. In the barotropic instability, stochastic KEB returns energy into turbulent fluctuations,
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but negative viscosity KEB returns energy into the mean flow. Both deterministic and stochastic KEB accel-
erate the transition to turbulence. However, it happens not due to an increase of the growth rates of normal
modes, but due to an increase of pre-exponentials. Wherein, the majority of incoming from stochastic KEB
energy is stored in non-growing normal modes. If an aim is only to accelerate the transition to turbulence,
then stochastic KEB can be usedwith reasonablymoderate amplitude disposed in the regions of strong shear
to prevent storing of energy in non-growing normal modes.

Summing up results of this work and [33], we are able to assess how do mentioned turbulence parame-
terizations work in complex situation when turbulence and jets appear in solution together. All three param-
eterizations are useful both in developed turbulence and in transition to turbulence and allow one to restore
TKE spectrum and accelerate instability, respectively. Being tuned as in this work, they can be safely used in
any higher resolved simulation because the limit of SS and KEB parameterizations (for fixed solution fields)
as resolution approaches infinity equals zero.
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