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Abstract. Large-scale inclined organized structures in stably stratified turbulent shear flows
were revealed in the numerical simulation and indirectly confirmed by the field measurements
in the stable atmospheric boundary layer. Spatial scales and forms of these structures coincide
with those of the optimal disturbances of a simplified linear model. In this paper, we clarify the
relation between the organized structures and the optimal disturbances, analyzing a time series
of turbulent fields obtained by the RANS model with eddy viscosity/diffusivity and stochastic
forcing generating the small-scale turbulence.

1. Introduction
Large-scale organized structures were revealed in numerical simulation of stably stratified
turbulent shear flows close in properties to the atmospheric boundary layer (see, for example,
[1], [2], [3]). These structures manifest themselves as thin inclined layers of fluid with a strong
stratification (fronts) separating well-mixed regions with a weak stratification. The presence
of such structures is indirectly confirmed by the field measurements in the stable atmospheric
boundary layer [2], [3].

An attempt was made in [4] to explain the appearance of such organized structures in
the stably stratified turbulent Couette flow by analyzing the non-modal stability of the mean
turbulent flow. Within this approach, disturbances that attain a maximum amplification of
their energy at finite time intervals (optimal disturbances) were found. It was shown in [4] that
the optimal disturbances coincide in spatial scales and forms with the high-energy large-scale
turbulent fluctuations extracted from the DNS (direct numerical simulation) results [5], [3].

However, only a few instantaneous turbulent fields from the DNS were considered in [4].
Therefore, despite a significant correlation of the optimal disturbances with the organized
structures, it remains unclear whether the optimal disturbances take place in the entire dynamics
of a turbulent flow, whether the organized structures appear in a nonlinear model due to the
linear development of the initial optimal disturbance, and how often such events occur. This
paper is devoted to these questions.
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In Section 2, a simple dynamic-stochastic RANS (Reynolds Averaged Navier-Stokes) model
of the emergence and development of the large-scale organized structures is proposed, which at
the qualitative level has the main properties of the full DNS model. This model is used to obtain
long enough time series of turbulent velocity and temperature fields. Section 3 describes the
technology proposed for the analysis of the obtained time series. Conducting similar experiments
with the DNS model will require significant computational resources, so we first decided to fully
develop the technology of the analysis and to assess its feasibility on a computationally much
simpler problem. Section 4 shows that the emergence of optimal disturbances in a nonlinear
model is well described by a linear mechanism, with statistical estimates of the characteristics
of this process being given. Section 5 shows that exactly the optimal disturbances are observed
as organized structures. In Section 6, a universal physical mechanism for the emergence of
large-scale organized structures in a turbulent flow is formulated.

2. Model of emergence and development of large-scale organized structures in the
stratified turbulent Couette flow
Let us consider in Cartesian coordinates x (streamwise), y (wall-normal), z (spanwise) the
motion of a viscous incompressible fluid in an infinite three-dimensional channel of half-height h:
−h < y < h in a gravity field. The upper wall of the channel moves with the velocity (U0/2, 0, 0),
the lower one moves with the velocity (−U0/2, 0, 0), the temperatures T2 > T1 are maintained on
the walls, respectively, and the velocity satisfies the no-slip condition. The fluid motion in the
Boussinesq approximation is governed by the Navier-Stokes, heat transfer and continuity system
of equations:

∂v

∂t
+ (v · ∇)v +∇p− 1

Re
∆v − (0,RiT, 0)T = 0,

∂T

∂t
+ (v · ∇)T − 1

PrRe
∆T = 0,

∇ · v = 0,

(1)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T is the nabla operator and ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

is the Laplace operator. Here v = (U, V,W )T , p and T are dimensionless components of the
velocity vector (in the directions of x, y, z), the specific pressure and temperature, respectively;
Re = U0h/ν, Ri = g (T2 − T1)h/(T1U

2
0 ) and Pr = ν/µ are Reynolds, Richardson and Prandtl

numbers, ν is the kinematic viscosity, µ is the thermal diffusivity, g is the acceleration due to
gravity.

The DNS of (1) was performed in [5], [3] in the computational domain with sizes Lx = 12,
Ly = 2, Lz = 8 for a fixed Prandtl number Pr = 0.7 and in a wide range of Reynolds and
Richardson numbers. In this study we consider only the case of Re = 4 · 104, Ri = 0.03. To
compute the mean profiles of the turbulent flow, averaging (denoted by (·)) was made over the
horizontal coordinates and time in a sufficiently large part of the model trajectory after reaching
a quasi-equilibrium state by the turbulent flow. The mean values of the streamwise velocity and
temperature will be further denoted by Ū = Ū(y) and T̄ = T̄ (y), respectively.

We assume that turbulent fluctuations can be separated into those Ũ ′, Ṽ ′, W̃ ′, T̃ ′, P̃ ′ of a
large spatial scale having the form of organized structures, and small-scale turbulent fluctuations
U ′, V ′, W ′, T ′, P ′. We represent the turbulent fields in the form

U = Ū + Ũ ′ + U ′, V = Ṽ ′ + V ′, W = W̃ ′ +W ′, T = T̄ + T̃ ′ + T ′, p = P̄ + P̃ ′ + P ′ (2)

and substitute (2) into (1), filtering out the small-scale turbulent fluctuations by the Reynolds
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averaging. Therefore we obtain the following system of equations

∂v

∂t
+ (v · ∇)v +∇p− 1

Re
∆v − (0,RiT, 0)T + (v′ · ∇)v′ = 0,

∂T

∂t
+ (v · ∇)T − 1

PrRe
∆T + (v′ · ∇)T ′ = 0,

∇ · v = 0,

(3)

where v = (Ū + Ũ ′, Ṽ ′, W̃ ′)T , v′ = (U ′, V ′, W ′)T , p = P̄ + P̃ ′ and T = T̄ + T̃ ′.
The interaction of the large-scale fluctuations with the small-scale turbulence is described by

the turbulent stresses (v′ · ∇)v′ and fluxes (v′ · ∇)T ′ in equation (3). Constructing a model
for the development of organized structures in [4], part of the turbulent stresses characterizing
the dissipative properties of a turbulent flow was parameterized by the isotropic eddy viscosity
and diffusivity operators, respectively, with the coefficients ν̄(y), µ̄(y) depending only on the
wall-normal coordinate. However, the model proposed in [4] does not represent the inherent
property of turbulent flows to randomly excite large-scale fluctuations by redistributing energy
from smaller to larger scales.

We suppose that the additional part of turbulent stresses can be described by the stochastic
forcing fv = (fu, fv, fw)

T , fT with zero mean and variances equal to D[(v′ · ∇)v′] and
D[(v′ · ∇)T ′], respectively. Here D[X] denotes the variance of a random field X. Then the
emergence and development of the large-scale flow components appearing in the form of organized
structures, can be described by the system of equations

∂v

∂t
+ (v · ∇)v +∇p−∆νv − (0,RiT, 0)T = fv,

∂T

∂t
+ (v · ∇)T −∆µT = fT ,

∇ · v = 0.

(4)

Probability distributions of the stochastic forcings fv and fT are unknown and can be chosen
only on physical grounds. We will assume that the random fields fv, fT are independent, delta-
correlated in time and horizontal coordinates, and have a normal distribution with zero mean
and variance depending only on the wall-normal coordinate y.

Since the random fields fv and fT describe the generation of large-scale fluctuations by small-
scale turbulence, it is reasonable to assume that the variance of the random field fT is proportional
to the production of temperature variance eT :

eT =
1

2

∂T ′2

∂t
= −T ′V ′dT̄

dy
,

and the total variance of fv is proportional to the production of turbulent kinetic energy e:

e =
1

2

∂(U ′2 + V ′2 +W ′2)

∂t
= −U ′V ′dŪ

dy
.

Note that the most intense generation of the small-scale turbulence occurs near the channel walls
as shown in figure 1 (left).

We assume that the random field fv is isotropic, i.e. the variance of each of its components is
proportional to e/3, and the time scale of the correlation of random fields in the numerical model
is equal to ∆t (time step of the numerical model). Thus, the resulting stochastic parameterization
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is as follows:
fu = fv = fw = fT = 0,

f2
u = f2

v = f2
w =

2

∆t
· e
3
,

f2
T =

2

∆t
· eT ,

(5)

where the power of stochastic forcing is normalized in such a way that it does not depend on ∆t.
The proposed model of the stochastic forcing has shortcomings, for example, the isotropic

assumption can violate close to the channel walls. However, it should be noted that the joint
statistical characteristics of the part of turbulent stress tensor responsible for the interaction
of small-scale turbulence with large-scale fluctuations are unknown, with the detailed DNS
experiments being required. Since these are unknown, it is not possible to answer which model
of the stochastic forcing is better or worse (in terms of comparison with the DNS results, which
is the only reasonable quality metric) and this issue is out of the scope of the paper. Therefore,
in this paper, we restrict ourselves to considering only one type of the stochastic forcing (the
simplest, isotropic one).

The numerical simulation of (4) with forcing (5) was carried out in the domain with sizes
Lx = 12, Ly = 2, Lz = 8 and the spatial resolution of nx × ny × nz = 48 × 128 × 32 grid
nodes in the directions x, y, z, respectively. Periodic boundary conditions in the directions x, z
were supplied for the velocity and temperature. The parameters e(y) and eT (y) of the stochastic
forcing as well as the coefficients of eddy viscosity ν̄(y) and diffusivity µ̄(y) were taken from the
DNS.

Minimum length scale reproduced by the RANS model (4) is the Kolmogorov length scale
∆K =

(
ν̄3/e

)1/4 determined by the eddy viscosity. Figure 1 (right) shows a comparison of the
Kolmogorov length scale ∆K and the grid length scale ∆y in the numerical realization of model
(4) as a function of the wall-normal coordinate. The grid length scale ∆y means the distance
between the adjacent grid nodes. Note that a non-uniform grid along the wall-normal direction
with the refinement towards the channel walls is used in the numerical model. It can be seen that
in the entire domain (except for the viscous sublayer) the grid length scale is significantly smaller
than the Kolmogorov length scale, i.e. the chosen spatial resolution of the model is sufficient to
resolve a minimum spatial scale of equations (4).

3. Analysis of the time series
As a result of the numerical simulation of (4) with forcing (5) we get long time series consisting
of N = 5000 instantaneous velocity and temperature fields evenly spaced with a step δt ≈ 0.5.
Subtracting the mean profiles of streamwise velocity Ū(y) and temperature T̄ (y) produced with
model (1) from each instantaneous field, a series of instantaneous fluctuation fields is obtained.
These fields are expanded into a complex Fourier series in horizontal variables

F (x, y, z) =

+∞∑
kx=−∞

+∞∑
kz=−∞

Fkxkz(y) exp

(
2πikxx

Lx

)
exp

(
2πikzz

Lz

)

to extract the large-scale flow components appearing in the form of organized structures. Here
kx, kz are streamwise and spanwise numbers of the Fourier harmonic, and i is the imaginary
unit.

For a fixed Fourier harmonic with numbers (kx, kz), we have a time series of its amplitude
which at discrete level is a rectangular complex matrix

Skxkz =
[
f1kxkz . . . fNkxkz

]
,
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Figure 1. On the left: Parameters e (red) and eT (blue) of the stochastic forcing (5) as a function
of the wall-normal coordinate y. On the right: the Kolmogorov length scale ∆K determined by
the eddy viscosity (black dashed) and the grid length scale ∆y (black solid) as functions of the
wall-normal coordinate y.

of order (4ny−1)×N , with the columns fkxkz being the vector of amplitude values of the velocity
components and temperature at the grid nodes in the wall-normal direction.

Let us define the total energy density for a fixed Fourier harmonic as

Ekxkz =
1

2

1∫
−1

(
|Ukxkz |2 + |Vkxkz |2 + |Wkxkz |2 +

Ri

dT̄ /dy
|Tkxkz |2

)
dy. (6)

and the inner product corresponding to the discrete analog of functional (6) as

(a, b)E =
(
K2a, b

)
,

where K is a diagonal matrix of order (4ny − 1).
The numbers (kx, kz) of the Fourier harmonic correspond to a pair of wavenumbers α =

2πkx/Lx, γ = 2πkz/Lz, for which we can compute the initial u0
opt and the developed uopt

optimal disturbances, the time topt of the optimal disturbance growth and amplification Γmax of
its total energy density (see [4] for details).

In what follows, we study the temporal evolution of the Fourier harmonic energy

Ekxkz(t) = | (fkxkz(t), fkxkz(t))E |
2,

and the squared absolute values

P 0
kxkz(t) = |

(
fkxkz(t),u

0
opt

)
E |

2, P opt
kxkz

(t) = | (fkxkz(t),uopt)E |
2.

of the Fourier harmonic amplitude projections onto the initial and the developed optimal
disturbances, respectively.

Energy spectrogram, i.e. the distribution of energy over individual Fourier harmonics,
can be computed for each instantaneous flow field. Averaging over all instantaneous energy
spectrograms, we obtain the averaged energy spectrogram shown in figure 2 in the ranges of
non-negative harmonic numbers: 0 ≤ kx ≤ 20, 0 ≤ kz ≤ 20.
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Figure 2. Averaged energy spectrogram of the instantaneous flow fields obtained from model
(4) with forcing (5).

The main part of energy in figure 2 is concentrated in the large-scale Fourier harmonics. The
highest energy is observed in the harmonics with zero streamwise number (kx, kz) = (0, 1), (0, 2).
Figure 2 differs from a typical spectrogram of the instantaneous fluctuation field from DNS [4],
where maximum of energy is achieved at large-scale harmonics with nonzero streamwise number.
The difference is apparently explained by the fact that the proposed stochastic parameterization
(5) incorrectly describes the generation of the small-scale turbulence in a stably stratified
turbulent flow (1).

Note that some part of energy in figure 2 falls on the harmonic with zero numbers (kx, kz) =
(0, 0), which means the difference between the mean profiles Ū(y) and T̄ (y) obtained from DNS
and those of obtained from model (4) with forcing (5). However, this difference is insignificant
and lies mainly in the mean temperature profile.

4. Emergence of the optimal disturbances within a nonlinear model
In the linear model [4], the developed optimal disturbance uopt arises from the initial optimal
disturbance u0

opt in the time topt with an amplification of energy in Γmax times. If the optimal
disturbance is governed strictly by the linear model, then

P opt
kxkz

(t) = ΓmaxP
0
kxkz(t− topt) (7)

for any t. The term on the right-hand side of (7) can be interpreted as forecast of the development
of the large-scale turbulent fluctuations by the linear model.

Let us check how much the temporal dynamics of the large-scale harmonics amplitudes in
model (4) with forcing (5) differs from (7). It is shown in figure 3, where the dependences
P opt
kxkz

(t) and ΓmaxP
0
kxkz

(t− topt) on time t are depicted for the Fourier harmonics with numbers
(kx, kz) = (0, 1), (1, 1). It can be seen that the forecast based on the linear model describes well
the projection onto the developed optimal disturbance both in terms of time moments at which
the peaks in energy are observed and in the magnitude of these peaks. Below we propose the
statistical estimates of the parameters topt, Γmax of disturbances observed in the time series.

Estimation t̂opt of the development time can be obtained as the maximum of the cross-
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correlation function

Ckxkz(τ) =
cov

(
P 0
kxkz

(t), P opt
kxkz

(t+ τ)
)

√
D(P 0

kxkz
(t)) ·D

(
P opt
kxkz

(t)
) (8)

between the projections of the Fourier harmonic amplitudes onto the initial and the developed
optimal disturbances. The cross-correlation function (8) for the large-scale harmonics with
numbers (kx, kz) = (0, 1), (1, 1) is shown in figure 4, where the value of topt produced with
the linear model [4] is marked for comparison. It can be seen that t̂opt for both cases is close to
topt.

The periodicity of the cross-correlation function Ckxkz(τ) is observed for a harmonic with
zero streamwise number kx = 0. This might be due to the nonlinear mechanism of regeneration
of large-scale streamwise streaks: the appearance of the initial optimal disturbance (streamwise
rolls) leads to the developed optimal disturbance (streamwise streaks), followed by breakdown
of the latter due to the secondary instability and regeneration of the former due to nonlinear
interactions. This mechanism was investigated for the large-scale near-wall structures in
turbulent shear flows [6], [7]. No periodicity is observed, i.e. the energy peaks randomly occur, for
the harmonic with numbers (kx, kz) = (1, 1) corresponding to the large-scale inclined structures.

Estimation Γ̂max of the energy growth magnitude can be obtained as the optimal linear
regression parameter

P opt
kxkz

(t) = Γ̂maxP
0
kxkz(t− topt) + ε, (9)

directly following from (7), where ε is a random error. The scatter plots of P opt
kxkz

(t) versus
P 0
kxkz

(t − topt) for the large-scale harmonics with numbers (kx, kz) = (0, 1), (1, 1) are shown in
figure 5 together with the optimal linear regression estimate. The statistical estimate Γ̂max is
rather close to Γmax produced with the linear model.

500 1000 1500 2000 2500
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10-6

500 1000 1500 2000 2500
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Figure 3. The time series of P opt
kxkz

(t) (red) and its forecast ΓmaxP
0
kxkz

(t − topt) based on the
linear model (blue) for the large-scale Fourier harmonics with numbers (kx, kz) = (0, 1) (top)
and (1, 1) (bottom).
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Figure 4. The cross-correlation function Ckxkz(τ) for the large-scale harmonics with numbers
(kx, kz) = (0, 1) (top) and (1, 1) (bottom). The black dashed lines mark values of t = topt
produced with the linear model [4].
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Figure 5. The scatter plots of pairs
(
P 0
kxkz

(t− topt), P
opt(t)
kxkz

)
(blue "◦" ) for the large-scale

harmonics with numbers (kx, kz) = (0, 1) (left) and (1, 1) (right). The estimate Γ̂max (9) and
values of Γmax produced with the linear model [4] are marked with red and green, respectively.
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5. Comparison of the developed optimal disturbances and the 1-st EOF
The organized structures can be extracted from the time series by the EOF analysis (EOF/PCA
method, see [8], [9]). In our case, the i-th EOF is the left singular vector ui of the matrix KSkxkz
corresponding to the i-th largest singular value σi. The 1-st EOF u1 is the spatial configuration
accounting for the most of the Fourier harmonic energy in the entire time series.

In what follows, we study the squared absolute value

P 1
kxkz(t) = | (fkxkz(t),u1)E |

2

of the Fourier harmonic amplitude projection onto the first EOF u1.
The dependences of Ekxkz(t), P

opt
kxkz

(t) and P 1
kxkz

(t) on time t for the Fourier harmonics with
numbers (kx, kz) = (0, 1), (1, 1) is shown in figure 6. It can be seen that the projections onto
the developed optimal disturbance and the 1-st EOF almost do not differ from each other (the
red line almost coincides with the pink one over the entire time series, the correlation coefficient
exceeds 0.99). The time series of energy of large-scale harmonics contains sharp peaks. Both
projections onto the developed optimal disturbance and the 1-st EOF are extremely large at all
energy peaks.
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Figure 6. The time series of Ekxkz(t) (green), P opt
kxkz

(t) (red) and P 1
kxkz

(t) (pink) for the large-
scale Fourier harmonics with numbers (kx, kz) = (0, 1) (top), (1, 1) (bottom).

Thus, it can be argued that exactly the developed optimal disturbances appear as large-scale
organized structures.

6. Conclusion
To sum up, let us formulate a possible mechanism for the emergence of large-scale organized
structures in a turbulent flow. As soon as disturbance appears from the small-scale turbulence
that has a projection onto the initial optimal disturbance, it develops due to the mechanism
described by the linear model [4]. If the value of the initial projection is large enough, then the
result is the developed optimal disturbance, which manifests itself in the turbulent fluctuation
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fields as organized structures. If typical values of large-scale disturbances amplitudes are small
enough (i.e. nonlinearity is not decisive), then the described mechanism is able to take place.

Within the framework of the dynamic-stochastic RANS model, the statistical estimates of the
development time and the energy amplification of the optimal disturbances are close to those
predicted by the linear model, i.e. nonlinearity and the presence of random turbulent fluctuations
are not a determining factor for the possibility of its development. To draw final conclusions,
this result should be verified with the DNS.
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