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Abstract
Optimal disturbances of a turbulent stably stratified plane Couette flow in a wide range
of Reynolds and Richardson numbers are studied. These disturbances are computed based
on a simplified system of equations in which turbulent Reynolds stresses and heat fluxes
are approximated by isotropic viscosity and diffusivity with the coefficients obtained from
results of direct numerical simulation. Three types of disturbances are considered: large-scale
streamwise-elongated rolls converting into streamwise streaks; large-scale vortical structures,
inclined in the vertical plane, changing the inclination to the opposite in process of their
evolution; near-wall rolls converting into streaks. Large-scale rolls and streaks predominate
at neutral or weakly stable stratification while the inclined structures begin to dominate
at moderately stable stratification. Near-wall rolls and streaks appear at any stratification
and their spanwise size in wall length units does not depend on the values of Reynolds and
Richardson numbers. It is shown that the development of inclined optimal disturbances is due
to the coupled action of the lift-up effect and the inviscid Orr mechanism. The energetics of
the optimal disturbances is discussed. It is shown that inclined optimal disturbances dissipate
rapidly after reaching maximum energy amplification.

Keywords Atmospheric boundary layer · Large-scale structures · Near-wall structures ·
Optimal disturbances · Stably stratified turbulence

1 Introduction

Organized structures such as elongated counter-rotating rolls with axes of rotation directed
along the mean flow and streamwise velocity streaks are common in wall-bounded neutrally
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stratified turbulent shear flows. The rolls transform to the streaks due to the lift-up effect
(Ellingsen and Palm 1975; Landahl 1980), see also review Brandt (2014). This effect is
accompanied by conversion ofmean flow kinetic energy into the kinetic energy of streamwise
velocity fluctuations, which significantly increases the energy of the streaks in comparison
with the energy of the rolls that produce them. The size of the streaks in the spanwise and
wall-normal directions varies in a wide range, from values comparable to the thicknesses of
the viscous and buffer layers (Kline et al. 1967; Smith andMetzler 1983;Moin andKim1982)
to values of the same order as the thicknesses of the logarithmic and outer layers (see review
Cossu and Hwang 2017). For the turbulent plane Couette flow, organized structures with
spanwise and wall-normal scales close to the channel height were first obtained numerically
in Lee and Kim (1991) and Komminaho et al. (1996), and later confirmed by laboratory
measurements (Kitoh et al. 2005). These structures are sometimes referred to as “very large
structures”or “superstructures”.The secondary instability andnonlinear effects allowa "rolls-
streaks-rolls" regeneration cycle and self-sustainment of these structures within the turbulent
flow (Hamilton et al. 1995; Waleffe 1997). This, apparently, explains the fact that streaks
account for a significant part of the streamwise velocity variance in wall-bounded flows. It
was shown in Rawat et al. (2015) that the regeneration cycle is not associated with non-linear
interactions of the organized structures with small-scale turbulence.

The other organized structures observed in neutrally stratified turbulent boundary layers
and wall-bounded turbulent flows are the hairpin vortices (Adrian 2007). The large-scale
hairpin vorticeswere also observed in the atmospheric boundary layer (HomemmaandAdrian
2003). However, for the turbulent plane Couette flow, recent direct numerical simulations at
high Reynolds number (Mortikov et al. 2019) or in very large computational domain (Lee
and Moser 2018) do not show the presence of the large-scale hairpin vortices, while the
large-scale streamwise-elongated rolls and streaks are observed and contribute significantly
to the momentum flux near the channel centre.

Steady-state turbulent wall-bounded flows in many cases have linearly stable mean veloc-
ity profiles (Malkus 1956; Bakewell and Lumley 1967). For such flows, instead of analysing
their linear instability, it is of interest to study their non-modal stability, i.e. to search for
disturbances that maximize their energy on finite time intervals (Butler and Farrell 1992;
Reddy and Henningson 1993; Schmid and Henningson 1994). These disturbances are usu-
ally called optimal disturbances or optimal perturbations (Schmid and Henningson 2001;
Schmid 2007). The existence of such disturbances is associated with the non-orthogonality
of the eigenmodes of the disturbance evolution equations linearised with respect to the main
flow. Optimal disturbances were originally discovered and investigated for canonical lami-
nar flows (see Schmid and Henningson 2001). They are widely used to explain the bypass
laminar–turbulent transition (see Boiko et al. (2011) and references therein). In Foster (1997),
they have also been used to analyse large-scale structures in the laminar Ekman layer, which
is the simplest model of the atmospheric boundary layer.

Optimal disturbances of turbulent flows were first computed in del Alamo and Jimenez
(2006), Pujals et al. (2009) (turbulent Poiseuille flow) and in Cossu et al. (2009) (zero-
pressure-gradient turbulent boundary layer). Optimal responses of the turbulent neutrally
stratified plane Couette flow to initial conditions and harmonic (or stochastic) forcing were
obtained in Hwang and Cossu (2010). Two types of high-energy coherent structures were
obtained: near-wall streaks with characteristic spanwise and wall-normal sizes of about
80–100 (in dimensionless length wall units) and large-scale streaks with a spanwise size
exceeding the height of the entire turbulent boundary layer. These results are in qualitative
and quantitative agreementwith the experimental observations and the numerical simulations.
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Optimal Energy Growth in Stable Turbulence 397

Fig. 1 Snapshot of temperature isolines in vertical cross-section of a stably-stratified turbulent plane Couette
flow (h is channel half-height, y is wall-normal direction, and x is streamwise direction) from the DNS results
of Glazunov et al. (2019) at Reynolds number Re = 4 × 104 and Richardson number Ri = 0.03

For all considered neutrally stratified wall-bounded turbulent flows with zero spanwise
mean velocity, the optimal energy growth is achieved for disturbances with zero streamwise
wavenumber. Such disturbances develop into streamwise streaks due to the lift-up effect. On
the other hand, according to the results of direct numerical simulation (DNS) and large-eddy
simulation (LES) (Sullivan et al. 2016; Glazunov et al. 2019), there are large-scale organized
structureswith non-zero values of the streamwisewavenumber, which arise in stably stratified
conditions. The existence of such structures is indirectly confirmed by field measurements in
the stable atmospheric boundary layer (Sullivan et al. 2016; Glazunov et al. 2019; Petenko
et al. 2019). These structures manifest themselves in the instantaneous temperature fields,
where they appear as irregular inclined thin layers with large gradients (fronts), spaced from
each other by distances comparable to the height of the entire turbulent layer and separated
by well-mixed regions. The presence of these structures is indicated by non-zero skewness in
the distribution of the gradients of temperature fluctuations (Sullivan et al. 2016; Glazunov
et al. 2019).

In Sullivan et al. (2016), a vortex structure associated with the observed temperature fronts
was extracted from LES data (see Fig. 18 in Sullivan et al. 2016), using conditional averaging
and vortex visualization method. The spatial configuration and the mechanisms responsible
for the emergence of such structures have not yet been explained.

Note that the formation of such inclined structures was found for the stably stratified
Ekman layer (LES, Sullivan et al. (2016)) as well as plane Couette flow (DNS and LES,
Glazunov et al. (2019), see Fig. 1, where the isolines of the temperature field are shown, and
the fronts correspond to regions of their larger concentration). In addition, similar structures
were observed in a stably stratified channel flow above an urban-like surface (LES, Glazunov
(2014)). These findings underline the importance of stable stratification in their formation
and a lesser influence of the effects due to rotation in the Ekman spiral or due to peculiarities
of the near-wall turbulence. The presence of such inclined structures might have a significant
impact on the dynamics of stably stratified turbulence. In particular, S.S. Zilitinkevich in
Glazunov et al. (2019) suggested that these structures can be responsible for growth of the
turbulent Prandtl number with increasing the gradient Richardson number (see Zilitinkevich
et al. 2007, 2013, and references therein).

Optimal disturbances of a turbulent stably stratified planeCouette flowwere first computed
in Zasko et al. (2020). In that paper, the total energy functional included the available potential
energy of buoyancy perturbations in addition to the disturbance kinetic energy.Mean velocity
and mean temperature, as well as effective coefficients of eddy viscosity and eddy diffusivity
were obtained from the DNS results (Mortikov et al. 2019; Glazunov et al. 2019). It was
shown that the form of optimal disturbances changes with the increase in stability, i.e. the
streamwise-elongated structures are replaced with the large-scale inclined structures with a
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non-zero streamwise wavenumber. Analysing the instantaneous fluctuation fields from the
DNS, where the large-scale inclined temperature fronts are observed (as in Fig. 1), it was
shown in Zasko et al. (2020) that high-energy large-scale Fourier harmonics significantly
correlate with the optimal disturbances. Spatial scales of the high-energy Fourier harmonics
also coincide with those of the optimal disturbances. In Zasko and Nechepurenko (2021), it
was found that the optimal disturbances significantly differ from the least stable eigenmodes
of the linearised system and represent a linear combination of a large number of essentially
non-orthogonal eigenmodes.

Previously, optimal disturbances with non-zero streamwise wavenumber were obtained
by Butler and Farrell (1992) for the laminar neutrally stratified Couette flow at low Reynolds
numbers. The coupled action of two mechanisms was proposed to explain the formation of
these disturbances and the growth of their energy, namely, the lift-up effect (in that work it
was referred to as the vortex-tilting mechanism) and the inviscid Orr mechanism (Orr 1907;
Schmid and Henningson 2001), which in Butler and Farrell (1992) was referred to as 2D
Reynolds stress effect. The impact of the Orr mechanism increases for disturbances with
short growth time. In the recent paper Jiao et al. (2021), these mechanisms were studied
in more detail to describe the "oblique" and "streak" types of laminar–turbulent transition
in a neutrally stratified plane Couette flow. Inclined optimal disturbances with a non-zero
streamwisewavenumberwere also found inKaminski et al. (2014, 2017) for a stably stratified
free shear flow.

In this paper, we consider a turbulent stably stratified plane Couette flow in a much wider
range of values of the Richardson and Reynolds numbers than in Zasko et al. (2020). For
the large-scale disturbances, we separate the two above-mentioned mechanisms of energy
growth and analyse the energy balance of disturbances during the period of their development.
A qualitative explanation of the predominance of inclined structures in the stably stratified
turbulent Couette flow is proposed. In addition, we consider small-scale local suboptimal
disturbances resembling near-wall rolls developing into near-wall streaks and demonstrate a
weak dependence of their spatial structure on the Richardson number.

An often used approach for determining optimal disturbances in turbulent flows is to
consider a modified system of Navier–Stokes equations with an isotropic effective viscosity
including bothmolecular and turbulent components (Reynolds andHussain 1972). The scalar
viscosity coefficient is found in such away that themean turbulent flow is a stationary solution
to the simplified problem under the same boundary conditions and external forcing. In plane-
parallel flows, such as Couette flow or Poiseuille flow, this coefficient can be found either
from the DNS data (as the ratio of the vertical total momentum flux to gradient of the mean
streamwise velocity, see Hwang and Cossu 2010) or using semi-empirical and analytical
approximations consistent with available measurement data and DNS.

It is worth noting that this approach is a rather rough approximation of the non-linear
interactions of large-scale disturbances with small-scale turbulence, since it does not take
into account the possible non-locality and anisotropy of turbulent transport (see, e.g., McK-
eon 2017, where this issue is discussed). Another disadvantage of this approach is that the
eddy viscosity includes a part associated with the transfer of momentum by the sought opti-
mal disturbances themselves. This might influence the quantitative results in flows which
contain large-scale organized structures of significant magnitude. For example, in a neutrally
stratified turbulent Couette flow at high Reynolds numbers, about 20–30% of the momentum
flux in the channel centre is due to rolls (Mortikov et al. 2019). In particular, this could be
the reason for the rather low amplification of the optimal disturbances obtained in Hwang
and Cossu (2010), and similar results presented below for neutral and close to neutral strati-
fication. However, the large vortical structures play a noticeably smaller role in the transfer
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of momentum (and heat) under the stable stratification comparing to neutral one. Another
important argument in favour of the applicability of the diffusion approximation in the con-
sidered problem is that, in some cases under stable stratification, the terms approximating the
Reynolds stresses and turbulent heat fluxes begin to play an appreciable role in the balance
of the disturbance energy only at times exceeding the maximum amplification time. This
effect will be discussed below when analysing the energy cycle of large-scale disturbances,
which appear as inclined structures. In addition, stable stratification damps the spatial scales
of turbulent eddies, limiting their characteristic size in proportion to the Obukhov length.
This leads to the separation of the spatial and temporal turbulent scales and the scales of
the considered disturbances (at least at the initial stages of their development), thus allowing
to consider turbulent transport as a diffusion process. Based on the foregoing, we assume
that the proposed approach may allow one to correctly determine the dependence of the
type of the flow disturbances on the parameters representing the stable stratification. In addi-
tion to the turbulent viscosity approximation, we use isotropic scalar effective diffusivity to
parameterise the sum of molecular and turbulent heat fluxes.

To compute the optimal disturbances in this work, we use the novel numerical technology
based on spatial approximation by the Galerkin–collocation method (Zasko et al. 2020), pro-
jection onto the subspace of non-divergent grid functions (Nechepurenko 2012), and efficient
algorithm for computing the maximum of the matrix exponential norm (Nechepurenko and
Sadkane 2011).

The paper is organized as follows: in Sect. 2we briefly introduce themathematical problem
to be solved and numerical technology which we use for computing the optimal disturbances.
The results related to the large-scale structures are reported in Sect. 3. The physical mecha-
nisms are discussed in Sect. 4. The results related to the near-wall structures are presented in
Sect. 5. Section6 summarizes the paper.

Throughout this paper, ‖.‖2 denotes the 2-norm for vectors and matrices, and superscripts
T and * denote the symbols of transposition and conjugate transposition, respectively.

2 Background

Consider the motion of a viscous incompressible fluid in a gravity field in an infinite three-
dimensional channel of half-height h: −h < y < h, where x (streamwise), y (wall-normal),
and z (spanwise) are Cartesian coordinates. The upper wall of the channel moves with the
velocity (U0/2, 0, 0), the lower one moves with the velocity (−U0/2, 0, 0), temperatures
T2 > T1 are maintained on the walls, respectively, and the velocity satisfies the no-slip
condition. The fluid motion in the Boussinesq approximation is governed by Navier–Stokes,
continuity, and heat transfer equations, expressed in dimensionless variables as:

∂u
∂t

+ (u · ∇)u + ∇ p − 1

Re
Δu − (0, RiT , 0)T = 0,

∂T

∂t
+ (u · ∇) T − 1

Pr Re
ΔT = 0,

∇ · u = 0,

(1)

where∇ = (∂/∂x, ∂/∂ y, ∂/∂z)T is the nabla operator andΔ = ∇·∇ is the Laplace operator.
Here u = (U , V ,W )T , p, and T are dimensionless components of the velocity vector (in the
directions of x , y, and z), the specific pressure and temperature, respectively; Re = U0h/ν,
Ri = g (T2 − T1) h/(T1U 2

0 ), and Pr = ν/μ areReynolds, Richardson, and Prandtl numbers,
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ν is the kinematic viscosity, μ is the thermal diffusivity, and g is the acceleration due to
gravity. The fluid temperature T at the upper (y = 1) and lower (y = −1) walls are 2 and 1,
respectively. The walls move at the speeds of 1/2 and −1/2 in the streamwise direction.

Direct numerical simulation of (1) was performed in Mortikov et al. (2019) and Glazunov
et al. (2019) in the computational domain with sizes Lx = 12, Ly = 2, Lz = 8. Periodic
boundary conditions in the directions of x and z were assumed for velocity and temperature.
The computations were carried out for the fixed Prandtl number Pr = 0.7 and Reynolds and
Richardson numbers lying within the ranges 1 ≤ Re × 10−4 ≤ 6 and 0 ≤ Ri ≤ 0.06. To
compute the profiles of the mean turbulent flow, averaging (denoted by (·)) was made over
the horizontal coordinates and time in a sufficiently large part of the model trajectory after
reaching a quasi-equilibrium state by the turbulent flow. The mean values of the streamwise
velocity and temperature are denoted by Ū = Ū (y) and T̄ = T̄ (y), respectively. The mean
values of the other velocity components on sufficiently large time intervals turned out to be
negligible and we consider them equal to zero.

The mean values of total dimensionless momentum and heat fluxes are also obtained from
DNS data and are defined as:

τ = UV − 1

Re

dŪ

dy
= const, FT = T V − 1

Pr Re

dT̄

dy
= const.

Following del Alamo and Jimenez (2006), Pujals et al. (2009), Cossu et al. (2009), Hwang
and Cossu (2010), and Zasko et al. (2020), we assume that the evolution of large-scale flow
is described by the following system of equations (Unsteady RANS):

∂ũ
∂t

+ (ũ · ∇) ũ + ∇ p̃ − Δν ũ −
(
0, Ri T̃ , 0

)T = 0,

∂ T̃

∂t
+ (ũ · ∇) T̃ − ΔμT̃ = 0,

∇ · ũ = 0,

(2)

where

Δν = ν̄
∂2

∂x2
+ ∂

∂ y
ν̄

∂

∂ y
+ ν̄

∂2

∂z2
, Δμ = μ̄

∂2

∂x2
+ ∂

∂ y
μ̄

∂

∂ y
+ μ̄

∂2

∂z2
,

with the operator Δν acting on the velocity vector component-wise, ·̃ denoting the Reynolds
averaging operator, and the modified pressure p̃ excluding the isotropic part of the Reynolds
stress. The interactionwith small-scale turbulence is approximated by isotropic eddyviscosity
and isotropic eddydiffusivitywith coefficients depending only on thewall-normal coordinate:

ν̄(y) = −τ/

(
dŪ

dy

)
, μ̄(y) = −FT /

(
dT̄

dy

)
.

The eddy viscosity and the eddy diffusivity are equal to their molecular values (1/Re and
1/Pr Re) at the channel walls.

Profiles Ū (y), T̄ (y) of the mean turbulent flow and coefficients of the eddy viscosity ν̄(y)
and eddydiffusivity μ̄(y) are shown inFig. 2a–d at variousReynolds andRichardson numbers
ranging from the case of neutral stratification (Ri = 0), where the temperature is considered
as a passive scalar, to the strongly stratified case (Ri = 0.055). With increasing Richardson
number, stable stratification damps the turbulent mixing, limiting the characteristic spatial
scales of the turbulent eddies, which leads to the gradual decrease in the eddy viscosity and
diffusivity. The profiles of the mean velocity and temperature near the channel centre tend
to be linear with increasing Richardson number, and their mean gradient increases.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Profiles Ū (y), T̄ (y), ν̄(y), μ̄(y), Ū+(y+), and T̄+(y+) (a-e) of the mean flow at Re = 2×104 (dotted),
Re = 4 × 104 (solid) and Ri = 0 (black), Ri = 0.01 (red), and Ri = 0.03 (blue). The green lines indicate
the profiles at Re = 4× 104 and Ri = 0.055. The profiles of Ū+(y+), T̄+(y+) are shown only for the lower
half-channel

Dynamic features of turbulent floware characterized by the friction velocity u∗ = √|τ0|/ρ
and the friction Reynolds number Reτ = u∗Re/U0, where τ0 is the dimensional momentum
flux and ρ is the fluid density. The turbulent temperature scale is T∗ = |FT0 |/u∗, where FT0
is the dimensional heat flux. We use the subscript ”+” for the variables non-dimensionalised
by turbulent scales:

y+ = Reτ (y + 1), Ū+ = Reτ (Ū + 0.5), T̄+ = T1
T∗

(T̄ − 1),

which are shifted to be equal zero at the lower wall. Figure2e-f shows the profiles Ū+(y+),
T̄+(y+) of themean turbulent flow at the lower half-channel at various Reynolds andRichard-
son numbers. The profiles coincide in the viscous sublayer (approximately, for y+ ≤ 10),
which indicates that the DNS was carried out with sufficient grid resolution. The logarithmic
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layer is pronounced at neutral and weakly stable stratification, while at moderately stable
stratification the influence of buoyancy forces starts from the buffer layer.

Stably stratified turbulence is characterized by theObukhov length scale L = u2∗T1/(gT∗).
It is worth noting that we define L without the additional multiplicative factor 1/κ , where κ

is the von Kármán’s constant, to keep the same notation as in Glazunov et al. (2019), where
the DNS results of the considered flow are presented. This length scale was proposed by
Obukhov (1971) and is used in the Monin–Obukhov similarity theory (Monin and Obukhov
1954) to express the statistical features of turbulence in the atmospheric boundary layer. The
dimensionless parameter ζ = h/L , which we call the stability parameter, universally char-
acterizes stratified turbulence (with the exception of thin near-wall layer) in the considered
flow at very high Reynolds numbers.

Values of the frictionReynolds number Reτ and the stability parameter ζ for all considered
pairs of (Re, Ri) are presented in Table 1.

2.1 Linear Model

By construction, system (2) has the following stationary solution:

ũ = ū ≡ (Ū (y), 0, 0)T , p̃ = P̄(y), T̃ = T̄ (y),

with profiles of streamwise velocity, pressure, and temperature satisfying the relations:

−ν̄
dŪ

dy
= τ, −μ̄

dT̄

dy
= FT ,

d P̄

dy
= Ri T̄ .

This flow is referred to as a main flow.
Represent an arbitrary solution of the system (2) in the neighbourhood of the main flow

as follows:
(ũ, p̃, T̃ ) = (ū, P̄, T̄ ) + ε(u′, p′, T ′) + o(ε), (3)

where u′ = (u′, v′, w′) and ε is a small parameter. Requiring that (3) satisfies system (2) for
any arbitrarily small absolute value of ε, the following linearised equations for the evolution
of small disturbances are obtained:

∂u′

∂t
+ Ū

∂u′

∂x
+

(
dŪ

dy
v′,−RiT ′, 0

)T

+ ∇ p′ − Δνu′ = 0,

∂T ′

∂t
+ Ū

∂T ′

∂x
+ dT̄

dy
v′ − ΔμT

′ = 0,

∇ · u′ = 0.

(4)

Equations (4) are considered with zero boundary conditions for u′, v′, w′, and T ′ on the
channel walls.

We seek for the solutions of system (4), periodic in streamwise and spanwise directions,
which gain the maximum growth of the disturbance total energy density:

1

8lx lz

lx∫

−lx

1∫

−1

lz∫

−lz

(
u′2 + v′2 + w′2 + Ri

dT̄ /dy
T ′2

)
dxdydz,

where lx and lz are the half-periods of the disturbance in x and z directions, respectively. Since
the main flow is independent on x and z, any periodic in x and z solution (u′, v′, w′, p′, T ′)
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Table 1 Values of Γmax, (αopt, γopt), and topt for the large-scale optimal disturbances, values of Γ̃max, γ̃opt ,
and t̃opt for the near-wall disturbances, and flow parameters ζ and Reτ at various values of Ri and Re

Ri × 102 Re × 10−4 Γmax (αopt, γopt) topt ζ Reτ Γ̃max γ̃opt t̃opt

0 0.075∗ 3.31∗ (0.00, 1.46)∗ – 0 – – – –

1 2.44 (0.00, 1.20) 41.9 0 276 2.72 17.4 2.49

2 2.31 (0.00, 1.15) 46.7 0 513 2.68 32.3 1.43

4 2.26 (0.00, 1.14) 50.8 0 947 2.81 63.6 0.80

0.5 1 11.7 (0.00, 1.00) 121 0.24 252 2.78 15.9 3.03

2 15.0 (0.00, 0.94) 148 0.27 463 2.76 28.7 1.79

4 21.0 (0.00, 0.91) 171 0.29 843 2.88 56.1 1.03

1 1 18.2 (0.00, 0.99) 108 0.52 236 3.06 14.9 3.68

2 22.2 (0.00, 0.94) 122 0.57 434 2.90 25.0 2.26

4 28.3 (0.00, 0.92) 131 0.63 786 2.93 51.5 1.21

2 1 22.9 (0.00, 1.06) 74.4 1.19 205 4.41 12.9 5.95

2 24.8 (0.00, 1.00) 81.2 1.27 383 3.44 22.9 3.10

4 30.4 (0.00, 1.01) 80.5 1.46 679 3.17 39.8 1.89

3 1 25.2 (0.00, 1.23) 52.3 2.15 168 8.90 10.6 11.04

2 24.8 (0.00, 1.12) 57.5 2.17 330 4.67 20.8 4.63

4 30.4 (0.39, 1.16) 46.6 2.50 586 3.77 33.9 2.84

6 38.1 (0.47, 1.14) 46.7 2.89 782 3.63 45.7 2.34

3.25 1 27.8 (0.31, 1.33) 41.6 2.64 151 13.1 9.50 14.3

3.5 1 29.4 (0.40, 1.37) 38.9 3.05 140 17.6 8.81 16.4

4 2 28.6 (0.50, 1.18) 40.1 3.46 271 8.93 15.6 9.2

4 36.1 (0.57, 1.10) 41.8 3.81 500 5.03 31.5 4.1

6 46.7 (0.60, 1.05) 44.1 4.44 664 4.81 41.8 3.5

4.5 2 35.3 (0.61, 1.15) 39.7 4.64 228 15.2 14.4 12.5

4 40.1 (0.63, 1.06) 41.4 4.64 456 6.37 28.7 5.4

6 50.5 (0.65, 1.02) 43.7 5.32 612 5.82 38.6 4.4

4.75 2 48.9 (0.69, 1.07) 41.7 5.88 195 21.7 12.3 15.5

5 4 45.5 (0.68, 1.02) 41.6 5.69 409 8.65 25.8 7.3

5.5 4 56.1 (0.73, 0.97) 43.8 7.46 342 15.2 21.5 10.9

The superscript "*" marks data from Hwang and Cossu (2009)

of the system (4) can be expanded in a series of solutions having the form:

(uαγ , vαγ , wαγ , pαγ , Tαγ )eiαx+iγ z, (5)

where α, γ are streamwise and spanwise wavenumbers respectively, while uαγ , vαγ , wαγ ,
pαγ , and Tαγ are complex amplitudes depending only on y and t . It can be shown that
the maximum growth of the disturbance total energy density is attained for solutions of
the form (5). Thus, we can restrict ourselves to considering only such solutions. Note that,
to obtain the physical quantities from the solution of the form (5), the real part should be
taken. Substituting disturbance of the form (5) to (4), the following equations with respect
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to disturbance amplitudes are obtained:

∂uαγ

∂t
+ iαŪuαγ + dŪ

dy
vαγ + iα pαγ − Δαγ

ν uαγ = 0,

∂vαγ

∂t
+ iαŪvαγ + ∂ pαγ

∂ y
− Δαγ

ν vαγ − RiTαγ = 0,

∂wαγ

∂t
+ iαŪwαγ + iγ pαγ − Δαγ

ν wαγ = 0,

∂Tαγ

∂t
+ iαŪ Tαγ + dT̄

dy
vαγ − Δαγ

μ Tαγ = 0,

iαuαγ + ∂vαγ

∂ y
+ iγwαγ = 0,

(6)

where:

Δαγ
ν = −α2ν̄ + ∂

∂ y
ν̄

∂

∂ y
− γ 2ν̄, Δαγ

μ = −α2μ̄ + ∂

∂ y
μ̄

∂

∂ y
− γ 2μ̄. (7)

For a disturbance of the form (5) at time t , the total energy density is the sum of kinetic
and potential components:

Et = 1

2

1∫

−1

(
|uαγ |2 + |vαγ |2 + |wαγ |2 + Ri

dT̄ /dy
|Tαγ |2

)
dy. (8)

The potential energy density is defined by analogy with the available potential energy of the
stably stratified atmosphere (Lorenz 1955). The same functional was used in Kaminski et al.
(2014, 2017) to study the optimal disturbances of strongly stratified shear layers.

The maximum growth

Γ αγ (t) = max
Et
E0

(9)

of the disturbance total energy density, where maximum is taken over all solutions of the
system (6), is defined at fixed values of α, γ , and t .

Let us introduce the following notation:

Γ
αγ
max = max

t≥0
Γ αγ (t), Γmax = max

α, γ
Γ

αγ
max,

(
αopt, γopt, topt

) = argmax
α, γ, t

Γ αγ (t). (10)

formaximumenergy amplification (at fixedvalues ofwavenumbers), globalmaximumenergy
amplification, optimal wavenumbers, and optimal time, respectively. Initial disturbance, at
which Γmax is attained, is called the optimal disturbance.

2.2 Technology of Optimal Disturbance Computation

To compute the optimal disturbances, we use the technology developed in Zasko et al. (2020).
After discretizing the system of Eq. (6) by the Galerkin–collocation method on the Gauss-
Lobatto grid (seeCanuto et al. 2007), we obtain a systemof ordinary differential and algebraic
equations of the form:

dq
dt

= Jq − Gp, Fq = 0 (11)

for q = E1/2(uT , vT ,wT ,TT )T and p, where u, v, w, p, and T are n-component columns
depending only on t with components being values of the amplitudes uαγ , vαγ , wαγ , pαγ ,
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Tαγ at the internal nodes of the computational grid, where n is the number of internal nodes.
Here E is a diagonal matrix of order 4n, which is chosen such that the squared second norm
‖q‖22 be a discrete analog of the functional (7) of the disturbance total energy density. A
detailed description of the spatial approximation and the matrices in (11) is given in Zasko
et al. (2020). As it follows from the second equation of (11), the solution q belongs to the
kernel of F. Defining q = Vϕ, where V is a rectangular matrix whose columns form an
orthonormal basis in the kernel of F, and multiplying the resulting equation on the left by
V∗, and also taking into account that G = −F∗, we obtain the following system of ordinary
differential equations:

dϕ

dt
= Hϕ, (12)

where H = V∗JV is a square matrix of order 3n + 1 for α = γ = 0 and of order 3n oth-
erwise. A detailed justification of this type of reduction for linear differential–algebraic
systems is given in Nechepurenko (2012). To compute the column of amplitude values
(uαγ , vαγ , wαγ , Tαγ ) of a disturbance of the form (5), it is necessary to make the following
reverse change of variables:

(uT , vT , wT , TT )T = E−1/2Vϕ. (13)

An arbitrary solution to the reduced system (12) can be represented as

ϕ(t) = exp{tH}ϕ0.

Due to the unitary invariance of the second norm, ‖q(t)‖22 = ‖ϕ(t)‖22 is a discrete analogue
of the total energy density of the corresponding disturbance of the form (5). Therefore, up to
the approximation error we have:

Γ αγ (t) = ‖ exp{tH}‖22, Γ
αγ
max = max

t≥0
Γ αγ (t). (14)

Thus, the computation of the maximum amplification Γ
αγ
max of the total energy density of a

disturbance is reduced to the computation of t = tαγ
opt which gives the maximum of Γ αγ (t)

for t ≥ 0, with H being a given square complex matrix. To solve this problem with a given
relative accuracy, we use the efficient algorithm (Nechepurenko and Sadkane 2011) based on
low-rank approximation. After tαγ

opt is found, we compute the largest singular value σopt and

the corresponding right ϕopt and left ψopt normalized singular vectors of exp{tαγ
optH}. The

maximum amplification Γ
αγ
max is equal to σ 2

opt, and the normalized amplitude of the optimal

disturbance at t = 0 and t = tαγ
opt can be computed by using (13)withϕ = ϕopt andϕ = ψopt,

respectively.
For the results presented below we use the grid with n = 100 internal nodes. It has been

verified that further increase in n does not change the results.

3 Large-Scale Structures

3.1 Streamwise-Elongated and InclinedVortical Structures

We consider a turbulent stratified plane Couette flow at fixed Reynolds number Re = 4×104

and two different values of the Richardson number Ri = 0.01 and Ri = 0.03 corresponding
to near neutral and stable stratification, respectively. At Ri = 0.01 large-scale streamwise-
elongated vortices are observed in theDNSdata (Mortikov et al. 2019) against the background
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(a) (b)

Fig. 3 Contour lines of the maximum energy amplification Γ
αγ
max at Re = 4 × 104, Ri = 0.01 (a) and

Re = 4 × 104, Ri = 0.03 (b) in the plane of wavenumbers (α, γ ). The maximum values are marked with
black dots

of small-scale turbulence. At Ri = 0.03 large-scale inclined layered structure in the temper-
ature field is observed in numerical simulation (Glazunov et al. 2019).

Figure 3 shows the contour lines of the maximum amplification Γ
αγ
max of the disturbance

total energy density in the first quarter of the plane (α, γ ). It can be seen that at Ri = 0.01
global maximum amplification is achieved with zero streamwise wavenumber and non-zero
spanwise wavenumber, i.e. the optimal disturbance is streamwise-elongated, while at Ri =
0.03 it is achieved with non-zero values of both wavenumbers.

The spatial configurations of the optimal disturbances are shown in Fig. 4, where u, v, w,
and T denote the real parts of the velocity and temperature components of the disturbance of
the form (5). Figure4a–d shows the velocity and temperature fields of optimal disturbance at
Re = 4× 104 and Ri = 0.01 in the plane x = 0 for one spanwise period of the disturbance.
The streamwise and spanwise wavenumbers of this optimal disturbance are αopt = 0 and
γopt ≈ 0.92 (spanwise wavelength λz = 2π/γopt ≈ 6.8). Here the optimal disturbance
resembles large-scale vortices alternating in the direction of rotation. At the initial time t = 0
the vortices are strongly swirled (i.e., the (w, v) velocity components prevail) and represent
rolls. A feature of rolls in a stably stratified flow (in contrast to a neutrally stratified one) is
that their temperature is not constant and concentrates mainly near the channel walls. The
optimal disturbance at time t = topt represents streaks, i.e. large-scale streamwise-elongated
structures with a predominance of the streamwise motion. The streak temperature at the
moment of the maximum energy growth is distributed in the same way as the streamwise
velocity component. For neutrally stratified flows, rolls develop into streaks via the lift-up
effect. This effect also determines the disturbance energy growth at low Richardson numbers.
It should be noted that spanwise wavelength of the rolls in the presence of stratification can
be larger than the values (λz ≈ 4 − 6) obtained in Pujals et al. (2009), Cossu et al. (2009),
Hwang and Cossu (2009), where only neutrally stratified turbulent flows were considered.

Figure 4e–h showsvelocity and temperature of the optimal disturbance at Re = 4×104 and
Ri = 0.03 in the plane x = 0 for one spanwise period of the disturbance. The streamwise
and spanwise wavenumbers of this disturbance are αopt ≈ 0.39 (streamwise wavelength
λx = 2π/αopt ≈ 16) and γopt ≈ 1.16 (spanwise wavelength λz = 2π/γopt ≈ 5.4). The
optimal disturbance shape in the streamwise section of the channel (z = 0) differs only in a
larger horizontal size. Streamwise velocity and temperature of the optimal disturbance at time
t = 0 are strongly inclined with respect to the velocity shear. During disturbance evolution
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Fig. 4 Real parts of the optimal disturbance components at Re = 4×104, Ri = 0.01 (a-d) and at Re = 4×104,
Ri = 0.03 (e-h) in the channel cross-section x = 0. Isolines of u (in colour) and velocity field (w, v) (by
arrows) at t = 0 (a, e) and at t = topt (b, f). Isolines of T (in colour) at t = 0 (c, g) and at t = topt (d, h). c
shows only a part of the channel near the bottom wall

by the time t = topt, they develop the opposite slope inherent to the structures formed in the
DNS (Zasko et al. 2020). Similar inclined structures were observed in the study of optimal
disturbances of the laminar neutrally stratified Couette flow (Butler and Farrell 1992). They
require a much shorter time to develop fully than the evolution time of rolls into streaks.
The mechanism of the energy growth of such structures was explained by a coupled action
of the lift-up effect and the Orr mechanism, which is that the disturbance can gain energy
from the main flow while turning with respect to the velocity shear. However, in contrast to
the turbulent stratified flow considered here, the inclined structures were a global optimal
disturbance in Butler and Farrell (1992) only at low Reynolds numbers and had a much larger
streamwise wavelength λx > 41.9.

In Fig. 5 the velocity components of the real part of the optimal disturbance (at Re =
4 × 104 and Ri = 0.03) are shown in the horizontal section y = 0. At time t = 0 the
horizontal velocity is almost perpendicular to the wavefront, and at t = topt is directed along
it. Isosurfaces of the real part of temperature of this optimal disturbance at time t = topt are
shown in Fig. 6a. Thus, according to Figs. 4, 5, 6, the inclined optimal disturbances resemble
rolls (at t = 0) and streaks (at t = topt) angled both to the main flow in the horizontal section
and to the velocity shear.

Note that Γ
αγ
max = Γ

−α,γ
max = Γ

α,−γ
max . So if the global maximum energy amplification

is achieved with wavenumbers (αopt, γopt), then there are disturbances of the form (5) with
wavenumbers (−αopt, γopt) and (αopt,−γopt)which correspondwith the same energy growth.
Due to the orthogonality of disturbances of the form (5) for different pairs of thewavenumbers
and the linearity of the problem, an arbitrary linear combination of optimal disturbances with
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Fig. 5 Isolines of v (in colour) and velocity field (u, w) (by arrows) of the real part of the optimal disturbance
at Re = 4 × 104, Ri = 0.03 at t = 0 (a) and at t = topt (b) in the horizontal section of the channel y = 0

Fig. 6 Isosurfaces of T of the optimal disturbances at Re = 4×104, Ri = 0.03 and time t = topt . a Real part
of the disturbance with wavenumbers (αopt, γopt). b Real part of the sum of disturbances with wavenumbers
(αopt, γopt) and (αopt, −γopt)

positive and negative spanwise wavenumbers also reaches the maximum energy growth. As
an example of such linear combination, Fig. 6b shows the real part of the sum of two above-
mentioned optimal disturbances. This disturbance has inclined vortical structure and resemble
the structures extracted from the LES data of stably stratified Ekman flow in Sullivan et al.
(2016) by conditional averaging methods. In Sullivan et al. (2016) the spatial configuration
of the extracted structures was associated with the hairpin vortices. Figure6b shows that
similar vortical structure could be obtained if the large-scale structures are the inclined
streaks, since positive and negative spanwise wavenumbers are not distinguished with the
conditional averaging used.

Note that Figs. 3 and 4 are similar to some figures in Zasko et al. (2020). We present and
discuss them here for better understanding of further results.

3.2 Dependence on Reynolds and Richardson Numbers

We consider a turbulent stratified plane Couette flow at 27 different pairs of Reynolds and
Richardson numbers (Re, Ri) which are varied as follows: Re × 10−4 = 1, 2, 4, 6 and
0 ≤ Ri ≤ 0.055. The results of computing the global maximum energy amplification Γmax,
the optimal wavenumbers (αopt, γopt), and the optimal time topt are given in Table 1. This
table also shows the corresponding values of the stability parameter ζ .

It is clear from Table 1 that in the case of neutral stratification (Ri = 0) the global
maximum energy amplification Γmax and the optimal spanwise wavenumber γopt decrease
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(a) (b)

Fig. 7 Dependence of the global maximum energy amplification Γmax on Re for a fixed Ri (a) and on Ri for
a fixed Re (b). The values for which αopt = 0 and αopt > 0 are marked in red and blue, respectively

with increasing Reynolds number, and the values of Γmax lie in the range of 2 − 3, which
is consistent with results of Hwang and Cossu (2009). The optimal spanwise wavenumber
γopt at Ri = 0 turns out to be in good agreement with the spanwise size of the large-scale
streamwise streaks, which is obtained in the recent DNS (Lee and Moser 2018).

The presence of stable stratification (Ri > 0) leads to a significant growth in the global
maximum energy amplification. It rises with increasing Reynolds number, which is shown
in Fig. 7a. The dependence of the global maximum energy amplification on Richardson
number is shown in Fig. 7b. Three characteristic regions are observed on the Γmax(Ri) curve:
growth of the amplification for rolls (red dots), transition from rolls to inclined structures,
and growth of the amplification for inclined structures (blue dots). It might seem counter-
intuitive that maximum energy amplification increases with increasing Richardson number
but the following detail should be taken into account: an increase in Ri leads to a decrease
in the eddy viscosity and in the eddy diffusivity (see Fig. 2).

Note that in the DNS of turbulent neutrally stratified plane Couette flow the most intense
large-scalemotions are rolls and streaks, while during transition to stable stratification a sharp
weakening of all large-scale fluctuations is observed. Therefore, small values of global max-
imum energy amplification at Ri = 0 are most likely related with the significant contribution
of the discussed large-scale structures to eddy viscosity that was noted in Sect. 1.

Dependence of the optimal streamwise wavenumber on the stability parameter ζ is shown
in Fig. 8. Optimal streamwise wavenumber increases for more stable conditions, with the
clear critical value ζcr ≈ 2.32 being observed, such that for ζ < ζcr the optimal disturbance
represents large-scale streamwise rolls developing into streamwise streaks, while for ζ > ζcr
the optimal disturbance represents inclined structureswith non-zero streamwisewavenumber.
The considered range of ζ corresponds to the values measured in the stable atmospheric
boundary layer, e.g., ζcr = 2.32 corresponds to ζ = 0.81 if the definition of the Obukhov
length scale includes additional multiplicative factor 1/κ with κ = 0.35 as in Businger et al.
(1971).

A lack of DNS data near the critical value ζcr does not allow to make strict conclusions,
but we suppose that the transition from αopt = 0 to αopt > 0 is smooth, since the dependence
of Γ

αγ
max on wavenumbers always has only one local maximum in the large-scale part of the

(α, γ ) plane (that is seen in Fig. 3 and similar figures at other considered (Re, Ri) pairs).
The another argument is that the optimal disturbances with αopt > 0 resemble inclined rolls
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Fig. 8 Dependence of the optimal
streamwise wavenumber αopt on
the stability parameter ζ ,
according to the data from
Table 1. Zero and positive values
of αopt are marked in red and
blue, respectively

and streaks, i.e. one can suppose the smooth transition of the disturbance form from the case
αopt = 0, when the optimal disturbances are streamwise-elongated rolls and streaks.

4 Physical Mechanisms of the Optimal Disturbance Growth

4.1 Influence of Buoyancy Forces

The question we intend to answer is: whether the non-zero streamwise wavenumber of the
optimal disturbance of a stably stratified turbulent flow is a result of the shape of turbulent
main flow velocity Ū (y) and eddy viscosity ν̄(y) profiles, or it is non-zero due to the influence
of the buoyancy forces? For this purpose,we compute the optimal disturbanceswith buoyancy
force excluded, using the samemain flow velocity Ū (y) and eddy viscosity ν̄(y). The optimal
disturbances of the form (5) are computed assuming Ri = 0 in equation for the disturbance
amplitudes (6) and in the functional (7), which in this case represents only the disturbance
kinetic energy. We consider values of Richardson number Ri ≥ 0.03, where the optimal
streamwise wavenumber is non-zero. In order to clarify the influence of the shape of Ū (y)
and ν̄(y) profiles, the results are compared with a further simplified problem — neutrally
stratified laminar Couette flow. Since for stable stratification the velocity profile Ū (y) in
the channel centre is close to linear one, we choose the following parameters to describe a
laminar flow: viscosity ν̄(0) and wall velocities ±Ũ/2, where:

Ũ = 2
dŪ

dy
(0)h. (15)

For a pair of parameters (Ri, Re), we define the effective Reynolds number Re∗ = Ũh/ν̄(0)
and compare three types of the optimal disturbances: including buoyancy forces (data from
Table 1), excluding buoyancy forces, and those found for laminar flow. Figure9 shows the
dependence of the global maximum energy amplification Γmax and optimal streamwise
wavenumber αopt on the effective Reynolds number for these three types of optimal dis-
turbances. The data from Butler and Farrell (1992) for laminar flow is also shown on Fig. 9
for additional verification of our numerical technology.
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(a) (b)

Fig. 9 The global maximum energy amplification Γmax (a) and optimal streamwise wavenumber αopt (b) as
functions of effective Reynolds number Re∗ for laminar Couette flow (black— our computations, red— data
from Butler and Farrell (1992)) and for turbulent flow (green— including buoyancy forces, blue— excluding
them)

Theglobalmaximumenergy amplifications for the disturbances computed for the turbulent
and laminar velocity profileswith buoyancy excluded are close to each other and are 1-2 orders
of magnitude greater than the values obtained with the buoyancy forces being taken into
account. When the buoyancy forces are excluded, the optimal disturbances of the turbulent
flow have exactly zero streamwise wavenumber, contrary to complicated dependence of
streamwise number on the effective Reynolds number in the laminar case. Thus, we conclude
that the non-zero optimal streamwise wavenumber cannot be explained by only the shape of
the turbulent main flow velocity Ū (y) and eddy viscosity ν̄(y) profiles and are associated
with the influence of the buoyancy forces (see Fig. 9b).

4.2 Lift-Up Effect and Orr Mechanism

There are two mechanisms of the disturbance kinetic energy growth, particularly, the lift-up
effect and the inviscid Orr mechanism. In order to separate the action of these mechanisms on
the disturbances of the form (5)with non-zerowavenumbersα and γ , we rotate the coordinate
system in the plane (x, z) by the angle θ = arcsin(α/γ ′) in clockwise direction, where γ ′ =√

α2 + γ 2. The new horizontal coordinates x ′ = x cos θ − z sin θ and z′ = x sin θ + z cos θ

are directed along and perpendicular to the wavefront, respectively (see Fig. 5). The main
flow velocity in the rotated coordinate system has non-zero streamwise Ū ′ = Ū cos θ and
spanwise W̄ ′ = Ū sin θ components, and velocity components of the disturbance in these
directions are u′

αγ = uαγ cos θ − wαγ sin θ and w′
αγ = uαγ sin θ + wαγ cos θ , respectively.

In the new coordinates, the disturbance (5) is written in the form:

(u′
αγ , vαγ , w′

αγ , pαγ , Tαγ )eiγ
′z′ , (16)

and governing equations of its amplitude evolution are as follows:

∂u′
αγ

∂t
+ iγ ′W̄ ′u′

αγ + dŪ ′

dy
vαγ − Δαγ

ν u′
αγ = 0,

∂vαγ

∂t
+ iγ ′W̄ ′vαγ + ∂ pαγ

∂ y
− Δαγ

ν vαγ − RiTαγ = 0,
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∂w′
αγ

∂t
+ iγ ′W̄ ′w′

αγ + dW̄ ′

dy
vαγ + iγ ′ pαγ − Δαγ

ν w′
αγ = 0,

∂Tαγ

∂t
+ iγ ′W̄ ′Tαγ + dT̄

dy
vαγ − Δαγ

μ Tαγ = 0,

∂vαγ

∂ y
+ iγ ′w′

αγ = 0.

Note that the last four equations of (17) do not include the variable u′
αγ , i.e. these equations

form a complete system of equations describing the evolution of the other four variables. The
evolution of u′

αγ is described by the first equation and is uniquely determined by its initial
value and the variable vαγ .

From (17) we can derive the evolution equations for the kinetic EK
t and potential E P

t =
Et − EK

t components of the total energy density for disturbance of the form (16):

dEK
t

dt
= −

1∫

−1

dŪ ′

dy
Re{vαγ u

′∗
αγ } dy

︸ ︷︷ ︸
lift-up term

−
1∫

−1

dW̄ ′

dy
Re{vαγ w′∗

αγ } dy
︸ ︷︷ ︸

Orr term

+ Ri

1∫

−1

Re{Tαγ v∗
αγ } dy

︸ ︷︷ ︸
buoyancy term

−
1∫

−1

ν̄[γ ′2 (
|u′

αγ |2 + |vαγ |2 + |w′
αγ |2

)
+

∣∣∣∂u
′
αγ

∂ y

∣∣∣
2 +

∣∣∣∂vαγ

∂ y

∣∣∣
2 +

∣∣∣∂w′
αγ

∂ y

∣∣∣
2]dy,

︸ ︷︷ ︸
kinetic energy dissipation term

(17)

dE P
t

dt
= −Ri

1∫

−1

Re{Tαγ v∗
αγ } dy −Ri

1∫

−1

μ̄

dT̄ /dy
(γ ′2|Tαγ |2 +

∣∣∣∂Tαγ

∂ y

∣∣∣
2
) dy.

︸ ︷︷ ︸
potential energy dissipation term

(18)

Time dependences of EK
t , E P

t , and the contribution of the underlined terms in (17) and
(18) are shown in Fig. 10 for two typical regimes, i.e. at Re = 4 × 104 and Ri = 0.01
(weak stratification, rolls and streaks) and at Re = 4 × 104 and Ri = 0.055 (strong stable
stratification, inclined structures).

The first two terms on the right-hand side (r.h.s.) of (17) are responsible for production
of the disturbance Kinetic energy due to the lift-up effect and due to the Orr mechanism,
respectively. If cos θ �= 0, the lift-up effect can increase the disturbance kinetic energy
along x ′ due to the vertical transport of the main streamwise velocity Ū ′. If sin θ �= 0, the
Orr mechanism can increase the kinetic energy of vortical motion in plane (y, z′), which is
accompanied by rotation of closed circulations by the shear of the main flow.

The sum of the third term on the r.h.s. of (17) and the first one on the r.h.s. of (18) is equal
to zero and represents the fact that the buoyancy term does not change the total energy of the
disturbance and is only responsible for the conversion between potential energy and kinetic
energy.
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In Fig. 10c the energy cycle of the optimal disturbance with zero streamwise wavenumber
is shown. Although the redistribution of energy between the potential and kinetic components
through the buoyancy conversion term is relatively small, it is due to this term the energy
cycle is similar to the energy cycle of the internal gravity wave: velocity fluctuations deform
the temperature isosurfaces and this leads to the accumulation of the potential energy of
the fluctuations. During the release of the potential energy, the rolls are spinning up in the
opposite direction. Consequently, the contribution of the lift-up effect periodically changes
the sign with an approximate period of 2topt. The time moment, at which the first change
in the direction of rotation occurs, is close to topt. At this moment all the kinetic energy is
contained in the streaks. Since the vertical spatial scale of such disturbance does not vary
much in time, the moment of maximum kinetic energy dissipation is also close to topt. The
internal gravity wave mechanism limits the time during which an optimal disturbance can
develop. As a consequence, the maximum energy amplification also decreases in comparison
(see Fig. 9) with the case described in the previous section, where the buoyancy forces are
excluded. Let us estimate the optimal time topt, using the frequency of the internal gravity
wave (Brunt–Väisälä frequency) at the channel centre:

N =
√
Ri

dT̄

dy
(0). (19)

The time topt accounts for approximately the half-period of the energy cycle, which cor-
responds to a quarter of the wave period. The channel height (vertical wavenumber ky = π)
is taken as the characteristic vertical scale of the wave. Then the estimate is as follows:

t∗opt = π

2ω
, ω = N

√
α2 + γ 2

α2 + γ 2 + π2 . (20)

For Re = 4 × 104, Ri = 0.01 and Re = 4 × 104, Ri = 0.055, the optimal times
are topt = 131 and topt = 43.8, respectively, while the estimate gives the following values:
t∗opt = 138.2 and t∗opt = 29.9. Note that this estimate ismore accurate for optimal disturbances
with zero streamwise wavenumber, but gives only crude approximation of topt for inclined
structures since ky depends on time.

With an increase in Richardson number, the Brunt–Väisälä frequency increases, and, as
a consequence, the corresponding characteristic time decreases. From Fig. 10d it follows
that for the strongest stability considered (Ri = 0.055), the contribution of buoyancy to the
energy cycle increases significantly in comparison with Ri = 0.01. The Orr mechanism,
which is possible only for the disturbances with a non-zero streamwise wavenumber, turns
out to be beneficial from the energetic point-of-view on short time periods. Inclined structures
are destroyed by the shear of the main flowwith the formation of large vertical gradients, and
as a result the energy cycle completes only one period, in contrast to the disturbances with
zero streamwise wavenumber. The time moment of the maximum kinetic energy dissipation
shifts from the optimal time topt to a later time (≈ 1.5topt) when the large vertical gradients
are formed. Note that the energy growth of the optimal disturbances for the considered range
of Richardson number occurs mainly due to the lift-up effect.

It should be emphasized that the dissipation of the kinetic energy is small during the
development of the inclined structures. This means that the results should depend weakly on
the choice of the eddy viscosity operator. As shown by additional computations not presented
in this work, the energy cycle of the inclined structures (see Fig. 10d) is not very sensitive to
decrease or increase in the coefficients of eddy viscosity and eddy diffusivity.
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In the linear model (6), the developing optimal disturbance does not contribute to themean
profiles, since it is harmonic in streamwise and spanwise directions. However, it can lead to
spatial inhomogeneity of flow characteristics even in the linear model. We further consider
the evolution of the optimal disturbance against the background of the mean flow:

(ũ, ṽ, w̃, T̃ ) = (Ū (y), 0, 0, T̄ (y)) + εRe{(ut , vt , wt , Tt )e
iαoptx+iγoptz}, (21)

in the linear model (6), where ε is the constant factor, and ut , vt , wt , Tt are time-dependent
amplitudes of the developing optimal disturbance, which is normalized to have unit energy
density at t = 0. The stratification of the mean flow is described by the gradient Richardson
number:

Rig = Ri
dT̄ /dy(
dŪ/dy

)2 , (22)

and one can define the contribution to the gradient Richardson number from the developing
optimal disturbance as follows:

R̃i g = Ri
∂ T̃ /∂ y

(∂ ũ/∂ y)2
− Rig. (23)

The quantity R̃i g evolves in time with the optimal disturbance development. Figure11 shows
R̃i g for the inclined optimal disturbance at Re = 4 × 104, Ri = 0.055 at the optimal time
moment t = topt (a) and the time moment t = 1.5topt (b), which is close to the moment
of maximum kinetic energy dissipation (see Fig. 10d). The constant factor ε is taken as
ε2 = 3 × 10−6, which corresponds to 1% of mean total energy of the turbulent fluctuations
in the DNS. The mean profile Rig is nearly constant near the channel centre and equals to
0.17 (Glazunov et al. 2019). The contribution of the optimal disturbance is rather high (up
to 20% from the maximum value of Rig) especially at t = 1.5topt although the disturbance
energy density at that moment is less than at topt. Thus, the development of the inclined
optimal disturbance can lead to spatial inhomogeneity of flow stratification after reaching
the optimal time moment. The same effect was observed in (Kaminski et al. 2017), where
the laminar stably stratified shear flow was considered. In the fully developed turbulent flow
(in the DNS) this can lead to the appearance of the large-scale inclined temperature fronts.

5 Near-Wall Structures

In the previous works on the study of optimal disturbances of the turbulent Poiseuille flow
(del Alamo and Jimenez 2006; Pujals et al. 2009) and turbulent boundary layer with zero
external pressure gradient (Cossu et al. 2009), it was established that in addition to the global
maximum in wavenumbers α and γ , the maximum energy amplification Γ

αγ
max also has a

local maximum, which is attained for zero streamwise wavenumber and sufficiently large
spanwise wavenumber. In these works the optimal disturbance corresponding to this local
maximumwas associated with organized structures in the form of near-wall streamwise rolls
developing into near-wall streamwise streaks which extend through the viscous and buffer
layers. No local maximum was found in the study of optimal disturbances of turbulent plane
Couette flow (Hwang and Cossu 2010). A possible reason for this, as the authors noted, is
insufficiently high Reynolds number considered.

The local maximum corresponds to the near-wall structures and it is suitable to use the
following dimensionless spatial coordinates for its analysis: y+ = Reτ (y + 1), z+ = Reτ z,
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(a) (b)

(d)(c)

Fig. 10 a, b Evolution of kinetic energy (blue) and potential energy (green) of the optimal disturbances. c, d
Contributions of individual terms of equations (17) and (18) to the energy change rate, namely, lift-up term
(blue), Orr term (red), buoyancy term (green), kinetic energy dissipation (pink) and potential energy dissipation
(black). Re = 4 × 104, Ri = 0.01 (a, c) and Re = 4 × 104, Ri = 0.055 (b, d)

Fig. 11 The anomaly in gradient
Richardson number R̃i g in the
streamwise section of the channel
(z = 0) for the optimal
disturbance at Re = 4 × 104 and
Ri = 0.055 at the optimal time
moment t = topt (a) and at the
time moment t = 1.5topt (b)

γ+ = γ /Reτ . Thevalues of frictionReynolds number Reτ for all consideredpairs of (Re, Ri)
are presented in Table 1. Note that the new wall-normal coordinate y+ is shifted to satisfy
y+ = 0 on the bottom channel wall.

Figure 12a shows the dependence of the maximum energy amplificationΓ
αγ
max on the span-

wise wavenumber γ ranged from 0.1 to 1000 at several values of the streamwise wavenumber
at Re = 4 × 104 and Ri = 0.02. It is evident that the flow has local maximum of energy
amplification which weakly depends on the streamwise wavenumber. This is consistent with
the previous findings in del Alamo and Jimenez (2006), Pujals et al. (2009) and Cossu et al.
(2009) for neutrally stratified flows. Note that at neutral stratification local maximum was
also observed. The values of spanwise wavenumber, optimal disturbance development time,
and maximum energy amplification corresponding to this maximum are denoted by γ̃opt, t̃opt
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(a) (b)

Fig. 12 a Dependence of the maximum energy amplification Γ
αγ
max on the spanwise wavenumber γ at various

values of the streamwise wavenumber α at Re = 4 × 104 and Ri = 0.02. b Dependence of the maximum
energy amplification Γ

αγ
max on the spanwise wavenumber γ+ in wall units at α = 0 and Re = 2× 104 (solid),

Re = 4 × 104 (dotted) and Ri = 0.01 (red), Ri = 0.02 (blue), and Ri = 0.03 (green)

and Γ̃max, respectively. These characteristics, computed for various values of Reynolds and
Richardson numbers, are presented in Table 1.

Although spanwise wavenumber γ̃opt varies strongly with the change in Reynolds and
Richardson numbers, it remains almost constant in wall units, namely, γ̃ +

opt = γ̃opt/Reτ ≈
0.063. This is illustrated by Fig. 12b, which shows the dependence of maximum energy
amplification at α = 0 on the spanwise wavenumber in wall units γ+. Note that the local
maximum becomes less pronounced with an increase in the Richardson number. If local
maximum is not found for some particular pair of Reynolds and Richardson numbers, we
define Γ̃max as the maximum energy amplification at α = 0 and γ+ = 0.063, assuming that
the spanwise size of near-wall structures remains constant. Thus, the spanwise size of the
optimal disturbances corresponding to the local maximum (if it exists) of maximum energy
amplification equals λ+

z = 2π/γ̃ +
opt ≈ 100 in wall units and does not depend on Reynolds

and Richardson numbers under weak stratification. These results are consistent with findings
for neutrally stratified turbulent flows.

Real parts of the velocity and temperature components of the optimal disturbance corre-
sponding to the localmaximum Γ̃max at Re = 4×104, Ri = 0.01 in the channel cross-section
x = 0 are shown in Fig. 13. This optimal disturbance has zero streamwise wavenumber and
spanwise wavenumber γ̃opt = 53. This optimal disturbance is represented by near-wall
streamwise-elongated structures with typical vertical size y+ ≈ 40. At t = 0 the kinetic
energy of wall-normal and spanwise motions and the potential energy prevail, i.e. the optimal
disturbance represents near-wall rolls. By the time t = t̃opt, the kinetic energy of streamwise
motion tends to prevail, i.e. they are near-wall streaks. Note that the optimal disturbance
temperature and streamwise velocity are similar in shape. The main physical mechanism
responsible for the development of near-wall optimal disturbances is the lift-up effect.

The dependence of the local maximum Γ̃max onRichardson number for different Reynolds
numbers is shown in Fig. 14a. A significant (greater than linear) growth of the maximum
energy amplification is observed with the increase in the Richardson number. Thus, the pres-
ence of stratification has slight effect on the spatial configuration of the near-wall optimal
disturbances but strongly influences their energy amplification. Note that under neutral strat-
ification Γ̃max does not depend on Reynolds number, which is consistent with the following
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Fig. 13 Real parts of the
near-wall optimal disturbance
components at Re = 4 × 104,
Ri = 0.01 in the section x = 0
near the bottom wall. Isolines of
u (in colour) and field (w, v) (by
arrows) at t = 0 (a) and at
t = t̃opt (b). Isolines of T (in
colour) at t = 0 (c) and at
t = t̃opt (d)

works del Alamo and Jimenez (2006), Pujals et al. (2009), Cossu et al. (2009), and only with
increase in Richardson number this dependence is apparent.

However, the variance of near-wall streamwise velocity fluctuations in theDNS (Glazunov
et al. 2019) decreases with increasing Richardson number (Fig. 14b) in contrast to Γ̃max(Ri)
(Fig. 14a). This discrepancy can occur since large-scale structures appearing under neutral
and weak stratification in a turbulent flow make a significant contribution to the momentum
flux which enters the definition of the eddy viscosity coefficient. Since the near-wall optimal
disturbances develop only via the lift-up effect, the eddy viscosity plays a decisive role for the
value of energy amplification because the energy cycle of the near-wall structures is similar to
that presented in Fig. 10c. The more contribution of the near-wall structures to the near-wall
turbulent flow, the more eddy viscosity, and, as a consequence, the less energy amplification
of optimal disturbances in the linear model. It should be emphasized that similar reasoning is
not applicable to large-scale inclined optimal disturbances under stable stratification, since
the kinetic energy dissipation is small during their development (see Fig. 10d).
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(a) (b)

Fig. 14 a Dependence of the local maximum Γ̃max of maximum energy amplification on Ri at various Re. b
The variance of the streamwise velocity fluctuations in wall units, at Re = 4 × 104 and various Ri , obtained
from the DNS (Glazunov et al. 2019)

6 Summary

Optimal disturbances of a turbulent stably stratified plane Couette flow were computed in
a wide range of the Reynolds and Richardson numbers. The effects due to the presence of
stable stratification were studied and highlighted. The following results were obtained:

(1) Under neutral and weakly stable conditions, the optimal disturbances correspond to
streamwise rolls evolving into streamwise streaks. In the presence of even a weak
stratification, the maximum energy amplification of these disturbances increases sig-
nificantly compared to neutral stratification. The latter property might be associated
with a shortcoming in the formulation of a simplified problem, since the observed large-
scale structures under neutral stratification significantly contribute to the momentum
flux, i.e. the eddy viscosity obtained with this flux might be overestimated. We notice
that in the DNS under neutral stratification, large structures resembling rolls and streaks
permanently exist, while they are significantly weakened at any non-zero positive values
of the Richardson number.

(2) With an increase in Richardson number, the type of optimal disturbances changes.
They become vortical structures with a non-zero streamwise wavenumber, inclined in
vertical cross-section against the mean velocity shear, and change their inclination to the
opposite in the process of evolution. At the moment of maximum energy amplification,
these disturbances also resemble streaky structures turned with respect to the main flow
in the horizontal plane.

(3) The transition between two types of optimal disturbances does not show a clear depen-
dence on the external flow parameters, i.e. the Reynolds and Richardson numbers. It was
found that a convenient parameter characterizing the transition from streamwise streaks
to turned streaks (inclined structures) is the dimensionless stability parameter ζ = h/L ,
where L is the Obukhov length scale. The transition occurs at the value ζcr ≈ 2.32. The
indirect relation between spatial characteristics of optimal disturbances to Re and Ri
and the existence of universal dependence on ζ suggests that the near-wall effects do
not have a decisive influence on these disturbances at large Re.

(4) It was shown that the emergence of optimal disturbanceswith a non-zero optimal stream-
wisewavenumber is directly associatedwith the influence of buoyancy forces and cannot
be explained by the shape of mean velocity and eddy viscosity profiles.
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(5) The energy growth time of inclined structures does not vary much (topt ≈ 40) with
increase in Richardson number and turned out to be shorter than the evolution time of
rolls into streaks.

(6) The energy growth of inclined structures is associated with the coupled action of the lift-
up effect and the Orr mechanism. The contribution from the lift-up effect is decisive in
all cases, but the role of the Orr mechanism increases with an increase in the Richardson
number.

(7) It was shown that under stable stratification the disturbance growth time topt is related
to the period of the internal gravity wave with the same horizontal wave numbers. The
optimal time topt for both streamwise structures and inclined structures is approximately
a quarter of the wave period.

(8) The dissipation of the kinetic energy is small during the development of the inclined
structures. This means that the results should depend weakly on the choice of the eddy
viscosity operator.

(9) The maximum of the kinetic energy dissipation of inclined structures occurs later than
the optimal growth time, i.e. it occurs at the moment when the structures are more
inclined in the vertical plane. Note that such dissipation is a parametrization of non-
linear mechanism of generating small-scale turbulence by the inclined structures. With
sufficient disturbance energy, this generation can locally increase the eddy viscosity
and eddy diffusivity coefficients (which are prescribed in the considered problem).
This can lead to spatially inhomogeneous mixing of the mean velocity and temperature
profiles. It can be assumed that it is precisely this non-linear mechanism that leads to
the appearance of well-mixed layers separated by fronts in the temperature fields. This
hypothesis should be verified on the basis of ensemble computations with DNS or LES
of high spatial resolution.

(10) The dependence of the maximum energy amplification on wavenumbers has a local
maximum, in addition to the global one, corresponding to the near-wall rolls develop-
ing into the near-wall streaks. These structures have a universal spanwise size (about
100wall length units). The dimensionless size of the near-wall structures and their shape
are weakly dependent on the Richardson number. Computation of linear optimal distur-
bances predicts an increase in their energy growth with increasing Richardson number.
This effect is not supported by the DNS data, where the streamwise velocity variance
decreases with increasing in Richardson number. Most likely, this contradiction is also
associated with the simplifications used and, in particular, the inapplicability of the
diffusion approximation to structure–turbulence interactions in the buffer sublayer.
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