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We propose a data-driven framework to simplify the description of spatiotemporal climate variabil-
ity into few entities and their causal linkages. Given a high-dimensional climate field, the method-
ology first reduces its dimensionality into a set of regionally constrained patterns. Time-dependent
causal links are then inferred in the interventional sense through the fluctuation-response formal-
ism, as shown in Baldovin et al. (2020) [1]. These two steps allow to explore how regional climate
variability can influence remote locations. To distinguish between true and spurious responses, we
propose a novel analytical null model for the fluctuation-dissipation relation, therefore allowing for
uncertainty estimation at a given confidence level. Finally, we select a set of metrics to summarize
the results, offering a useful and simplified approach to explore climate dynamics. We showcase
the methodology on the monthly sea surface temperature field at global scale. We demonstrate
the usefulness of the proposed framework by studying few individual links as well as “link maps”,
visualizing the cumulative degree of causation between a given region and the whole system. Finally,
each pattern is ranked in terms of its “causal strength”, quantifying its relative ability to influence
the system’s dynamics. We argue that the methodology allows to explore and characterize causal
relationships in high-dimensional spatiotemporal fields in a rigorous and interpretable way.
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I. INTRODUCTION

The Earth’s climate is a complex dynamical system
composed by many interacting components, such as
the atmosphere and hydrosphere, and their interactions
[2]. Such linkages give rise to nontrivial feedbacks,
generating self-sustained spatiotemporal patterns [3, 4].
An example is the El Niño Southern Oscillation (ENSO),
a recurrent pattern of natural variability emerging from
air-sea interaction in the tropical Pacific Ocean [5, 6].
Other examples include the Asian Monsoon, the Indian
Ocean Dipole, and the Atlantic Niño, just to cite a few
[7–9]. Such patterns, commonly referred to as modes
of variability, interact with each other on a vast range
of spatial and temporal scales, see for example [10–12].
Spatiotemporal climate dynamics can then be considered
a collection of modes of variability and their linkages, or
as commonly referred to, a “climate network” [13, 14].
The identification of such a complex array of interac-
tions and the quantification of its response to external
forcings (e.g., [15, 16]) is a fundamental (but nontrivial)
problem at the root of our understanding of climate
dynamics. It requires hierarchies of models, theories,
observations, and new tools to analyze and simplify the
description of high-dimensional, complex data [4, 17]. In
fact, the exponential growth of data from models and
observations, together with appropriate and rigorous
frameworks, promise new ways to explore and ultimately
understand climate dynamics [17]. An important step
when “learning” from climate data is to infer meaningful
linkages among time series, whether among modes
of variability or other features of the system (e.g.,
global averages). Traditionally, this has been done by
quantification of pairwise similarities, whether linear
or nonlinear (for example [16, 18, 19] and [20], respec-
tively). Such statistical similarities cannot quantify
what we refer to as “causality”, limiting our ability to
discover meaningful mechanisms in high-dimensional
dynamical systems such as climate. In the context of
dynamical systems, the main idea of causal inference
can be informally summarized as follows: given a system
x = [x1(t), x2(t), ..., xN (t)] of N time series, where t is
a time index, we aim in quantifying (a) to what extent
and (b) at what time scales changes in a variable xj(t)
can influence another variable xk(t + τ) at later times
[1, 21].

This study proposes a scalable framework to (a)
coarse grain a spatiotemporal climate field in a set
of few patterns and (b) infer the causal links among
such entities. Altogether, this allows to study complex,
high-dimensional climate dynamics in an interpretable
and simplified way.

Causality is a fundamental topic in science ranging
from foundational questions in physics and philosophy
[22–30] to practical design and implementation of
inference algorithms [31]. In the last decades, there has

been a great interest in developing new methodologies to
infer causal associations directly from data. In the case
of time series data, attempts to infer causal connections
start from the work of Granger [32], who framed the
problem of causal inference in terms of prediction. The
main idea of Granger causality was to draw a causal
link between two variables xj and xk if the past of
xj would enhance the predictability of the future of
xk. Another attempt, coming from the dynamical
system literature, was based on the concept of transfer
entropy [33, 34]. Crucially, as noted in [1], Granger
causality and transfer entropy give similar information
and are equivalent for Gaussian variables [35]. In the
last decades, new ideas from computer science, mainly
driven by Pearl [31, 36], have given us practical ways
to design and implement causal tools mainly based on
graphical models. Frameworks of such kind have been
recently developed in climate science with contributions
ranging from the work of Ebert-Uphoff and Deng (2012)
in [37] to the newer “PCMCI” method led by Runge
et al. (2019) [38]; see [39] for a review. Additionally,
the Machine Learning (ML) community is actively
interested in causality and applications and we refer to
[40] for details on new developments and open problems
in “Causal ML”.

Recently, it has been noted that linear response theory
[41, 42] may serve as a rigorous framework to understand
causality in physical systems [1, 21, 43, 44]. The main
rationale is that the formalism provides a strategy to
compute the change in statistical properties of a physical
system after a small perturbation solely from the notion
of the unperturbed dynamics [44, 45]. This allows to
capture causal relations in the interventional sense
[1, 30, 36], as done typically in physical experiments.

This differs from many commonly employed causal
algorithms, such as conditional independence test-
ing [46], Granger causality [32] and transfer entropy
[47], by focusing directly on the problem of causal
effect estimation [31] rather than causal discovery.
Many causal questions in climate can be cast into the
paradigm of perturbations and responses as proposed
in [1]. Examples of such questions may in fact be: how
much do changes in fresh water fluxes in Antarctica
affect sea level rise in the North Atlantic? How do
changes in sea surface temperature anomalies in the
Pacific Ocean affect temperatures in the Indian Ocean?
Answering such questions often relies on quantifying the
time-dependent “flow of information” along the under-
lying causal graph rather than discovering the graph
itself [1, 44] (see also [48] in the context of information
theory). Such difference with causal discovery methods
is further explored and discussed in Section IID. On the
computational side, causal discovery algorithms such as
the one based on conditional independence, do not scale
to high-dimensional systems [39, 40]. Differently, linear
response theory scales to high-dimensional data and
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allows to write rigorous, analytical relations between
perturbations and responses.

It should be noted that linear response theory is an
active field of research in climate studies [3, 21, 49–56].
Such studies, quantifying long-term, forced changes in
climate observables, can be broadly grouped in two
approaches [57]: the one pioneered by Leith (1975) [49],
making use of the fluctuation-dissipation formalism, and
the more general formalism proposed by Ruelle (1998)
[43, 58]. This study relates to the approach proposed by
Leith [49] by considering (a) stationary fields and (b)
impulse perturbations. This statement will be furthered
formalized in Section IV.

The extension of the proposal of Baldovin et al.
(2020) [1] for studying spatially extended dynamical
systems is contingent on two important steps: (i) a
methodology to reduce the dimensionality of the system
and (ii) a framework for uncertainty estimation. Point
(ii) is particularly important when inferring results from
real-world data. In such case spurious results are always
present.

In this paper, we contribute to (a) dimensionality re-
duction, (b) linear response theory and (c) causality in
climate in the following ways:

i) We introduce a scalable computational strategy to
decompose a large spatiotemporal climate fields
into a set of few regionally constrained modes. The
average time series inside each pattern quantifies
the climate variability of specific regions around the
world. The time-dependent linkages among such
patterns are then inferred through the fluctuation-
dissipation relation. This step allows to explore
how local (i.e. regional) variability can influence
remote locations.

ii) We propose an analytical null model for the
fluctuation-dissipation relation. The model as-
signs confidence bounds to the estimated linear re-
sponses, therefore distinguishing between true and
spurious responses. This allows for trustworthy
statistical inference from real-world data. The ap-
plication of this model is general and not limited to
climate applications.

iii) We showcase the proposed framework on the
monthly sea surface temperature (SST) field at
global scale. For this step, we consider a 300
years long, stationary integration of a global cou-
pled climate model. Long-distance linkages in the
SST field have been characterized in many previ-
ous studies. It therefore offers a good real-world
test-bed for the methodology. We show how the
proposed framework drastically simplifies the de-
scription of such a complex, high-dimensional sys-
tem in an interpretable and comprehensive way.

The paper is organized as follows: in Sec. II we in-
troduce the proposed framework. The data analyzed are
described in Sec. III. The methodology is applied to cli-
mate data in Sec. IV. Sec. V concludes the work.

II. FRAMEWORK

A. Partitioning climate fields into regionally
constrained patterns

Spatiotemporal chaotic fields can be viewed as dy-
namical systems x ∈ RN living in a N -dimensional state
space [59, 60]. The dimensionality N is theoretically
infinite but in practice equal to the number of grid cells
used to discretize the longitude, latitude and vertical
coordinates (times the total number of variables) [61].
In the case of dissipative chaotic systems, such high-
dimensional dynamics is confined on lower-dimensional
objects known as “inertial manifolds” or “attractors”
[60, 62, 63]. The effective dimensionality of the system
[64] is then finite and given by the attractor dimension
D. This is arguably the case of large scale climate dy-
namics, where recurrent spatiotemporal patterns, known
as modes of variability (e.g., ENSO, monsoon system,
Indian Ocean modes [9, 16, 65] etc.) are a manifestation
of the low dimensionality of the climate attractor [61, 66].

Here the goal is to coarse grain the original climate
field x ∈ RN into a set of very few (order 10) patterns.
Crucially, such components should be regionally con-
strained in longitude-latitude space. This comes from
the observation that, physically, climate variability can
be often thought of as a set of responses driven by local
perturbations (e.g., warming of the tropics driven by
anomalous warming in the eastern Pacific [6]). Methods
like δ-MAPS [67, 68] can extract modes of variability.
Given climate fields, δ-MAPS first identifies spatially
contiguous clusters and then infers a weighted and direct
network between such entities based on correlations.
The method has proven to be useful in climate studies
[16, 19, 69–72] but suffer from few drawbacks: it does
not scale well with high-dimensional datasets (i.e.,
a large number of grid cells) and, depending on the
field analyzed, it can be sensitive to one of its parameters.

In Appendix A we discuss strengths and limitations
of current dimensionality reduction methods and further
motivate our proposal.

In this study, we show that adding a simple constraint
to community detection methodologies [73, 74] provide
a scalable and practical framework to identify regionally
constrained modes of variability in climate fields. The
strategy proposed here is based on two main steps: first,
given a field x ∈ RN,T we infer a graph between its N
time series based on both their covariability and distance.
We then identify communities in such graph, partitioning
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the original data into n components. Each community
will consist of sets of highly correlated time series and
will serve as proxies for climate modes of variability.

1. Graph inference

Consider a spatiotemporal field saved as a data matrix
x ∈ RN,T , with N time series of length T . Given a pair
of time series xi(t) and xj(t), scaled to zero mean, we

compute their covariance at lag τ = 0, Ci,j = xi(t)xj(t);

where f stands for the temporal average of function f .
An undirected, unweighted graph can then be encoded
in adjacency matrix A ∈ RN,N as:

Ai,j =

{
1− δi,j if Ci,j ≥ k and d(i, j) ≤ η

0 otherwise
(1)

Where the Kronecker delta δi,j allows to remove “self-
links”.

The parameter k sets the minimum covariance that
two time series must be connected. The parameter d(i, j)
is the distance between grid cells i and j, and η is a dis-
tance threshold. The rationale behind this choice is that
we consider two time series xi(t) and xj(t) linked to each
other if (a) their covariance is larger than a threshold k
and (b) if they are relatively close in the spatial domain
considered. Importantly, d(i, j) is computed using the
Haversine distance, determining the distance between
two points (i and j) on a sphere given their longitudes
and latitudes. Potentially, such parameters can be
specified by the user. However, their optimal values will
largely depend on the statistics of the field of interest
(e.g., sea surface temperature, cloud fraction) and by the
spatial domain considered (e.g., regional or global do-
mains). We therefore propose two heuristics to compute
such parameters directly from the data matrix x ∈ RN,T .

a. Heuristic for parameter k. Given time series
xi(t) and xj(t): (a) compute covariances Ci,j , ∀i, j; i ̸= j
and (b) set k as a high quantile q of the distribution
of all covariances Ci,j . To make this idea feasible in
practice, we can approximate such distribution by ran-
dom sampling Sk pairs of time series xi(t) and xj(t) and
then computing their covariances. k is then estimated
as a high quantile q of the sampled distribution. A
pragmatic choice of q is q = 0.95 as we observed in
different applications that is a good compromise between
the identification of a sparse, but not too sparse, graph.
The sampling size considered here is Sk = 106.

b. Heuristic for parameter η. Given time series
xi(t) and xj(t) embedded at grid point i and j: (a)
calculate the Haversine distance d(i, j) between pairs
i and j and (b) estimate η as a low quantile of the
distribution of all distances d(i, j). As for the parameter
k, in practice the distribution of distances can be

approximated by random sampling Sη pairs of locations
i and j and computing their Haversine distance. We
choose q = 0.15, with no large sensitivity over such
threshold, and Sη = 106.

2. Detecting communities

Sets of highly correlated time series in the original
field x ∈ RN,T correspond to groups of nodes that are
more interconnected to each other than to the rest of
the graph, in other words “communities” [74]. Fast
and scalable community detection algorithms [75] can
be leveraged to reduce the dimensionality of the graph
in Eq. 1. In this study, we consider the Infomap
methodology [76, 77]. Such method is based on the Map
Equation [78] and casts the problem of community de-
tection as an optimal compression problem [77]. Mainly,
Infomap exploits the community structure to minimize
the description of a random walk on the graph [78]. Such
methodology has been found to be the best performing
community detection in different benchmarks, such as in
[75], and also shown excellent performance in a previous
climate study [79].

Finally, given a set of n communities c =
(c1, c2, c3, ...cn) we study their temporal variability
as the average over every time series inside. For-
mally, for each community cj we define its signal as
X(cj , t) = 1∑

i∈cj
cos(θi)

∑
i∈cj

xi(t) cos(θi); where θi

is the latitude of xi(t). The term cos(θi) allows to
implement the area-weighted averaging on a uniform
longitude-latitude grid. The fluctuation-dissipation
response formalism is then leveraged to infer causality
among such time series.

In this study, we considered correlation functions
rather than covariances, therefore Ci,j = xi(t)xj(t) in
Eq. 1 are computed after scaling xi(t) to unit variance.
This was done for qualitative comparison with results
obtained through the δ-MAPS framework [67, 68] but
covariances can be considered in future work.

B. Linear response theory and
fluctuation-dissipation relation

Baldovin et al. (2020) [1], proposed the following phys-
ical definition of causality: given a dynamical system
x(t) = [x1(t), x2(t), ..., xN (t)] with N time series, each
of length T we say that xj causes xk, i.e. xj → xk, if a
small perturbation applied to variable xj at time t = 0,
i.e. xj(0) → xj(0)+ δxj(0), induces on average a change
on variable xk(τ) at a later time t = τ . We note that
[21, 44] pursue close scientific goals, and the proposal in
[1] can be viewed as a specific case of the general frame-
work proposed in [21].
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1. General case

Consider a Markov process x(t) =
[x1(t), x2(t), ..., xN (t)]. Each time series xi(t) is
scaled to zero mean. The system is stationary with
invariant probability distribution ρ(x). We perturb
the system x(t) at time t = 0 with a small, impulse
perturbation δx(0) = [δx1(0), δx2(0), ..., δxN (0)]. We
aim to answer the following question: how does this
external perturbation δx(0) affect the whole system x(τ)
at time t = τ , on average? Formally, we are interested
in quantifying the following object:

δ⟨xk(τ)⟩ = ⟨xk(τ)⟩p − ⟨xk(τ)⟩, (2)

where the brackets ⟨xk(τ)⟩ indicate the ensemble
averages of xk(τ), i.e. the average over many realizations
of the system, and the subscript p specifies the per-
turbed dynamics. Therefore, Eq. 2 defines the difference
between the components xk(τ) of the perturbed and
unperturbed systems in the average sense. Eq. 2 can
be used to study changes δ⟨O(xk(τ))⟩ of a generic ob-
servable O(xk(τ)) (i.e., a physical measurable quantity,
function of the state space vector x(τ) at time t = τ).
To study causality, here we simply consider the identity
case O(xk(τ)) = xk(τ), see [1].

Under the assumption of a small perturbation δx(0)
and with ρ(x) sufficiently smooth and non-vanishing, the
following result holds:

Rk,j(τ) =
δ⟨xk(τ)⟩
δxj(0)

= −
〈
xk(τ)

∂ ln ρ(x)

∂xj

∣∣∣
x(0)

〉
. (3)

R(τ) is the linear response matrix and we refer to
Section II of Boffetta et al. (2003) [80] for a derivation
of Eq. 3. Rk,j(τ) quantifies the response of a variable
xk(τ) at time t = τ given a small perturbation δxj(0)
applied to variable xj(0) at time t = 0. Eq. 3 is
known as the generalized fluctuation-dissipation relation
(FDR) and valid for both linear and nonlinear systems
[42]. Note that in case of deterministic systems the
invariant measure ρ(x) is singular almost everywhere on
the attractor. Therefore in practice one needs to add
Gaussian noise even to deterministic systems in order to
“smooth” the probability distribution before applying
FDR as proposed here [51].

Eq. 3 is a powerful formula as it allows to compute
responses to perturbations solely given the gradients of
the probability distribution ρ(x) of the unperturbed sys-
tem. However, the functional form of ρ(x) is not known
a priori and can be highly nontrivial, especially for high-
dimensional systems. To overcome such issue, applica-
tions often focus on the simpler case of Gaussian distri-
butions (see for example [49, 57]). This is the case of
linear systems as shown in the next section.

2. Linear systems and quasi-Gaussian approximation

We now consider a N dimensional stochastic linear
process x(t) = [x1(t), x2(t), ..., xN (t)] governed by the
following equation:

x(t+ 1) = Mx(t) +Bξ(t). (4)

The matrix M ∈ RN,N specifies the deterministic
dynamics of the system. The term ξ ∈ RN with

ξi(t)
iid∼ N (0, 1) represents a delta correlated white noise

(i.e., ⟨ξ(t)ξ(s)⟩ = δt,s). The matrix B ∈ RN,N specifies
the amplitude of the noise (i.e., standard deviation).

In this case, the probability distribution ρ(x) is Gaus-
sian and Eq. 3 factorizes to:

R(τ) = M τ = C(τ)C(0)−1. (5)

Where the covariance function Ci,j(τ) =
⟨xi(t + τ)xj(t)⟩ (xi is assumed to be zero mean).
Eq. 5 shows that the response of a linear system to
small external perturbations is encoded in its covariance
functions and can be therefore estimated from its time
history [80].

a. Relevance for nonlinear systems. Such form
of the FDR has been the one commonly used in cli-
mate applications and it is commonly referred to as
“quasi-Gaussian approximation” [51, 53, 54, 81, 82]. Im-
portantly, it has been shown that such formula performs
well for weakly nonlinear systems. For instance Baldovin
et al. (2020) [1] showed remarkably good results when
analyzing linear responses in a Langevin equation with a
quartic potential. Gritsun et al. (2007) [51] also pointed
out how this formula works well also for non-Gaussian
systems with second order nonlinearities. Additionally,
Eq. 5 has been shown to give reliable results in the
case of nonlinear deterministic dynamical systems also
in case of finite perturbations, see Fig. 1 in Boffetta et
al. (2003) [80]). Furthermore, we will show in Appendix
D that the probability distributions considered in this
study can be well approximated by Gaussians, further
justifying the use of this approximation in our context.

Results presented in this section hold in the sense of
ensemble average, therefore covariances C(τ) and C(0)
are computed by averaging over many realizations of the
system. This gives rise to an additional complication in
real world experiments for which we only have access to
a single trajectory.

C. A null model for the fluctuation-dissipation
relation

In real-world applications we cannot compute en-
semble averages. The common way to overcome such
problem and reconcile data analysis with theory, is
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through the assumption of ergodicity [83]. If the system

x is ergodic it holds: O(x) = ⟨O(x)⟩ in the limit

T → ∞; where O(x) is a general observable, O(x)
indicates the time average and T is the length of the
trajectory x.

This is the main assumption behind any work in
climate using fluctuation-dissipation theorem (see
[53] and references therein). In this case, covariance
functions are estimated using temporal averages, e.g.
Ci,j(τ) = xi(t+ τ)xj(t) (xi is assumed to be zero mean).
However, even in this case we are left with the problem
of observing the system over a finite time window.
Therefore we can always expect spurious results when
estimating response functions. To the best of our
knowledge, a clear statistical test to distinguish between
spurious and real responses in the linear response theory
formalism has not been proposed in the literature.
Here we fill this void by proposing a null model for
fluctuation-dissipation relation and derive its analytical
solution. We start by proposing a null hypothesis for a
general stochastic dynamical system.

a. Null hypothesis. Given a system x(t) =
[x1(t), x2(t), ..., xN (t)] it holds Rk,j(τ) = 0, ∀j, k =
1, ..., N ; with j ̸= k. In the context of causal-
ity this implies that there is no causal link
xj → xk, ∀j, k = 1, ..., N ; j ̸= k.

b. Null model. Given a process saved as a data ma-
trix x ∈ RN,T , we define a new process x̃ ∈ RN,T simu-
lated by a null model. Every time series in x and x̃ are
rescaled to zero mean. The null model takes the following
form:

x̃(t+ 1) = M̃x̃(t) + B̃ξ(t)

with M̃ =


ϕ1 0 · · · 0
0 ϕ2 · · · 0
...

...
. . .

...
0 0 · · · ϕN

 ;

B̃ =


σ̃1 0 · · · 0
0 σ̃2 · · · 0
...

...
. . .

...
0 0 · · · σ̃N

 ;

ξi(t)
iid∼ N (0, 1), i = 1, ..., N.

(6)

Here, ϕi is the lag-1 autocorrelation of the “original”
time series xi(t); σ̃i = σi(1 − ϕ2

i ) is the standard
deviation of the Gaussian noise, where σi is the standard
deviation of the “original” time series xi(t). Therefore,
each time series x̃i(t) has the same mean, variance and
lag-1 autocorrelation of xi(t), however every pair x̃i(t),
x̃j(t) is now independent. Note that this test is largely
inspired by the commonly adopted red noise test in
climate analysis [84–87].

The matrix M̃ , defining the deterministic evolution, is
diagonal; therefore at asymptotic times T → ∞ there is
no causal link among variables. However, for finite time
windows, the response matrix estimated through time
averaged covariance matrices as R(τ) = C(τ)C(0)−1

will give rise to spurious off-diagonal elements. The
distribution of responses of the null process x̃ defines
confidence bounds of responses of the original process x.

To compute the confidence level of the responseRk,j(τ)
at each lag τ we first propose a numerical implementa-
tion. We then solve the problem analytically for the case
T >> 1.

1. Confidence bounds of the response matrix: numerical
estimation

Given a field x ∈ RN,T , our goal is to provide an es-
timation of a confidence interval of the response matrix
R(τ) at each lag τ . This can be done as follows:

i) we generate a new process x̃ ∈ RN,T using the null
model proposed in Eq. 6.

ii) Estimate the response matrix R(τ) of the null
model x̃(t) for lags τ ∈ [0, τ∞].

iii) Repeat the two steps above for B times, (B should
be large, B >> 1), therefore creating an ensemble
of null responses.

iv) For each lag τ we obtain a distribution of possible
responses generated by the null model. This allows
to estimate confidence bounds of responses by com-
puting, for example, low and high quantiles of the
distribution, or as chosen in this paper, multiples
of its standard deviation.

2. Confidence bounds of the response matrix: analytical
derivation

We note that the analytical form of the response
matrix in the null model in Eq. 6 is trivial and given
by R(τ) = M τ with entries ϕτ

kδk,j ; δk,j being the
Kronecker delta. However, estimating responses from
time series of finite length, will give rise to spurious
results departing from the expected value of M τ .

In this section we present the analytical probability
distribution of the estimated (i.e., measured) responses
R(τ) = C(τ)C(0)−1 in the case of time series of
finite length generated by the null model in Eq. 6. We
then refer the reader to Appendix B 2 a for the derivation.

The main assumption is that null responses Rk,j(τ)
follow a Normal distribution. Therefore the expected
value E[Rk,j(τ)] = ⟨Rk,j(τ)⟩ and variance Var[Rk,j(τ)] =
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⟨(Rk,j(τ) − ⟨Rk,j(τ)⟩)2⟩ uniquely define the probability
distribution ρ(Rk,j(τ)). We have:

E[Rk,j(τ)] = ϕτ
kδk,j

Var[Rk,j(τ)] =
ϕ2τ
k − 1

T
+

2

T

(1− ϕτ
kϕ

τ
j

1− ϕkϕj

)
− 2ϕτ

k

T

(
ϕk

ϕτ
j − ϕτ

k

ϕj − ϕk

)
.

(7)

Finally, in the case ϕk = ϕj we substitute the term

ϕk
ϕτ
j −ϕτ

k

ϕj−ϕk
with the limit:

lim
ϕj→ϕk

ϕk

ϕτ
k − ϕτ

j

ϕk − ϕj
= ϕτ

kτ. (8)

Equation 7 assumes that each time series has been
previously normalized to zero mean and unit variance.
In the case of non-standardized time series xi(t) we
need to account for contributions coming from the
variances σ2

i . This can be simply done by correcting the
equation Eq. 7 as: (σ2

k/σ
2
j )·Eq. 7 (see also Eq. 15 in [1]).

In this paper, confidence bounds are always defined by
E[Rk,j(τ)]± 3

√
Var[Rk,j(τ)] (i.e., ±3σ confidence level).

Finally, we note that the analytical confidence bounds
proposed in Eq. 7 can potentially overcome an important
problem in climate applications of linear response theory.
Previous studies such as [51, 54, 82] focused on evaluating
the integral

∫∞
0

dτ R(τ). In practice, the upper bound
of the integral needs to be specified by a τ∞ much larger
than the characteristic time of the response. This has
been commonly done by considering τ∞ as low as 30 days,
often in order to avoid spurious results for larger values.
The confidence bounds proposed in this section can then
be leveraged in order to neglect such spurious terms and
study responses at longer time scales.

D. A simple example

We test these ideas in the context of a linear Markov
model. We choose the same test model used in [1] in
order to compare results and show differences between
approaches. The system considered is the following:

x(t+ 1) = Mx(t) +Bξ(t)

with M =

a ϵ 0
a a 0
a 0 a

 ;

B =

b 0 0
0 b 0
0 0 b

 ;

ξi(t)
iid∼ N (0, 1), i = 1, 2, 3.

(9)

As in [1], we set a = 0.5 and b = 1; we then set
ϵ = 0.04. Note that here [x1, x2, x3] correspond to

[x, y, z] in [1]. In this simple model, a small perturbation
applied on variable x2 would propagate through the
system and cause a change first at variable x1 and
then at x3 [1]. However, a perturbation in x3 cannot
reach either x1 and x3, this is clear by looking at the
underlying graph in Fig. 1(a). Both these links are
correctly captured by the true responses (i.e., M τ ;
shown in orange in Fig. 1) with the first nonzero
response R3,2(τ) (i.e., x2 → x3) correctly captured at
lag τ = 2 and zero responses R2,3(τ) (i.e., x3 → x2) for
any τ . As shown in [1], such results could not have been
inferred with correlation analysis only.

Let us briefly note here the main conceptual differ-
ence between the fluctuation-response formalism and
methods for causal discovery. Causal discovery methods
used in climate and based on conditional independence
such as [46] aim in discovering the underlying causal
graph in Fig. 1(a) given time series data. Therefore,
the link x2 → x3 would not be identified as a causal
link. The same holds for Granger causality and transfer
entropy [32, 47] as shown in [1]. However, in a physical
experiment an intervention over variable x2 would cause
a change in variable x3. Such “interventional” view of
causation is the one considered here and can be correctly
captured by linear response theory as shown in Fig.
1(b). We refer to Section IIIA of [1] for an in-depth
discussion.

In real-world cases we deal with time series with fi-
nite data. We then simulate the system for T = 105

time steps and estimate the causal links xj → xk with
correlation functions (i.e., formula 5 after standardizing
each xi to unit variance) using temporal averages. As
expected, in this case our results are affected by spurious
terms, see blue lines in Fig. 1. The null model proposed
in Eq. 6 is then leveraged to assign confidence bounds to
the estimated responses. Responses inside the confidence
bounds in Fig. 1 can be considered as spurious. The con-
fidence bounds correctly identify the non-zero responses
R3,2(τ) for τ = 1 and large lags as spurious results, see
Fig. 1(b). Additionally, the test allows us to disregard
the spurious link x3 → x2, see Fig. 1(c). All responses
Rk,j(τ), i.e. all links xj → xk are reported in Appendix
C, Figure 5.

E. Metrics

The framework allows to identify any causal interac-
tion xj → xk given the definition of causality presented
in [1]. Given N time series this means N(N − 1) time-
dependent links. Analyzing all interactions in such net-
work gets rapidly out of hands with largerN ; for example
N = 20 would imply 380 time-dependent links. We then
introduce a few metrics to analyze such causal graphs. In
[1], the authors proposed a simple “cumulative degree of
causation” of each link xj → xk as a Kubo formula [88].
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a(a)
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FIG. 1. Panel (a): Graph representing the Markov model in
Eq. 9. This is the same simple system considered in Bal-
dovin et al. (2020) [1] (where here [x1, x2, x3] correspond to
their [x, y, z] in [1]). Panel (b): response of variable x3 when
perturbing x2, i.e. testing for link x2 → x3. Panel (c): re-
sponse of variable x2 when perturbing x3, i.e. testing for
link x3 → x2. Here all time series have been rescaled to zero
mean and unit variance before computing responses. “Ground
truth” of the response is computed as R(τ) = Mτ . Blue lines
are responses estimated through temporal averages: for this
step we use a long trajectory of length T = 105 simulated by
system in Eq. 9. Red dots indicate the confidence bounds
computed numerically using B = 104 ensemble members of
the null model as shown in IIC 1. The black dashed line is
the analytical solution as in Eq. 7. Confidence bounds are
defined correspond to ±3σ. All estimated responses (i.e. blue
curves) in between the confidence bounds are here considered
as spurious.

Here we consider the same formula while summing over
the statistically significant responses Rk,j(τ

∗), defined at
lags τ∗. We compute respones Rk,j(τ) up to a maximum
lag τ∞; theoretically, the summation would be up to ∞,
in practice we choose a τ∞ much longer than the charac-
teristic time of the response. The “cumulative degree of

causation” considered here is then defined as follows:

Dj→k =

τ∞∑
τ∗

Rk,j(τ
∗) (10)

Since responses can be negative and positive, the degree
of causation such as in Eq. 10 can be zero even in the
presence of causal links. It is therefore useful to con-
sider a modified version of Eq. 10 by summing over the
absolute value of responses as follows:

D∗
j→k =

τ∞∑
τ∗

| Rk,j(τ
∗) | (11)

Eq. 10 (and its slight modification 11) quantifies the
time-dependent strength of the causal link xj → xk.
It therefore allows to identify which variable xk is
influenced the most by perturbations on variable xj : the
largest Dj→k (in absolute value) the strongest is the link
xj → xk.

Finally, we rank each variable xj by defining its “causal
strength” as follows:

Dj =

N∑
k=1

D∗
j→k ; j ̸= k (12)

Eq. 12 allows to rank nodes in the climate network
in regards to their ability to causally influence other
nodes. Informally, large values of Dj would mean that
perturbations in xj will be able to affect a large portion
of the system.

Note that in case of comparisons with other datasets,
Dj→k, D∗

j→k can be normalized by 1/τ∞; Dj can be

normalized by the number of variables as 1/(N − 1).
Furthermore, in case of datasets with different temporal
resolutions it is possible to evaluate integrals of the
kind

∫ τ∞
0

Rk,j(τ
∗)dτ∗ with a simple trapezoidal rule as

commonly done in climate applications [51, 54]. These
steps are not needed in this study.

Finally, for a given community/mode j identified by
the strategy proposed in IIA 2, it is possible to plot the
cumulative causal links Dj→k and D∗

j→k (see Eq. 10 and

11) with any other community k as a map. Given a
pattern j will refer to such map as “link map” Dj→k.
Similarly, the “causal strength” Dj of each node j as
defined in Eq. 12 can be plotted as a map, referred to as
“strength map”.

III. DATA

To explore and showcase the proposed causal frame-
work we consider a long, stationary integration of the
state-of-the-art coupled climate model GFDL-CM4 [89].
The ocean component of CM4, named MOM6, has an
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horizontal grid spacing of 0.25◦ and 75 vertical lay-
ers [90]. The atmospheric/land component is the AM4
model [91, 92] with horizontal grid spacing of roughly
1◦ and 33 vertical layers. We consider the sea surface
temperature field (SST) at global scale. The simulation
considered, known as “piControl”, is a 650 years long in-
tegration with constant CO2 forcing set to preindustrial
level. This allows to focus on a long, stationary climate
trajectory. In this work we consider the last 300 years
of this simulation. Even with stationary CO2 forcing,
the climate system can display variability at a vast range
of time scales coming from the internal dynamics of the
system. Importantly, especially at higher latitudes the
system can display significant oscillations up to 10–100
years time scales, i.e. “multidecadal oscillations” [93].
Even in a 300 years long run such low frequency oscilla-
tions are sampled only a few times. Therefore, to sim-
plify the interpretation of results, in this work we high-
pass filter every time series with a cut-off frequency of
f = 1/(10 years) and focus on interannual variability
only. Furthermore, the analysis will focus on SST anoma-
lies only, after removing the seasonal cycle. In this study
we consider temporal resolution of 1 month as a reason-
able time scale to observe propagation of signals among
modes of variability at global scale.

IV. CAUSALITY IN CLIMATE FIELDS

A. Applicability of fluctuation-response theory in
climate studies

The main theoretical ideas justifying the application
of methods in Section II B in climate, trace back at least
to the work of Hasselman, K. (1976) [94]. The main
intuition of the “Hasselman’s program” [4] relies on
thinking of processes with enough time scale separation
between short and long time scales in terms of Brownian
motion. This was first tested by Frankignoul and Hassel-
man (1977) [95] showing that the statistical properties
of sea surface temperature (SST) variability can be in
fact explained (at first order) by linear stochastic models
with white noise representing the fast atmospheric vari-
ability. Such ideas were further explored and convingly
demonstrated by Penland, C. (1989) [96] and Penland
and Sardeshmukh (1995) [97] and motivated recent work
on coupling functions as in [98] and [99].

The aforementioned studies justify the application of
concepts introduced in Section II B to explore causality
in climate fields. Specifically, this work will focus on the
SST fields. Physically, this means that we will make the
(rather strong) simplification of considering SST variabil-
ity as a deterministic process and treat higher-frequency
phenomena (e.g., atmospheric variability) as noise as
done in [94]. Focusing only on sea surface temperature
is however a limitation of this work and should be taken
into account when analyzing the results. The extension

to a multivariate framework is left for future work.

B. Relation to previous climate studies

We briefly present the main relationship between
fluctuation-dissipation response studies investigated in
the climate literature [45, 49, 51, 54, 82] and the causal-
ity framework explored here. Climate studies focused
on studying the response δ⟨x(t)⟩ of a dynamical sys-
tem x perturbed by some (infinitesimally small) time-
dependent forcing as follows:

δ⟨x(t)⟩ =
∫ t

0

dτ R(τ)δf(t− τ). (13)

Where R(t) is the linear response operator. In this study
we consider stationary fields and impulse perturbations
and therefore the forcing can be written as a delta func-
tion δ(t− τ). In such case, Eq. 13 reduces to:

δ⟨x(t)⟩ =
∫ t

0

dτ R(τ)δ(t− τ) = R(t), (14)

and the operator R(t) alone allows to study causal links.

In what follows, responses in Eq. 14 are computed by
(a) using the quasi-Gaussian approximation as shown in
Eq. 5 and (b) by first standardizing every time series to
zero mean and unit variance; therefore the responses con-
sidered are computed using correlation functions (rather
than covariances), equivalent to Eq. 15 in Baldovin et al.
(2020) [1].

C. Application to global sea surface temperature

1. Dimensionality reduction and causal inference

We now focus on sea surface temperature (SST) vari-
ability at global scale. We consider the latitudinal range
60oS-60oN at 1o resolution accounting for N = 31141
time series. The SST field is saved as monthly averages
for 300 years for a total of T = 3612 time steps.
Applying the community detection algorithm without
the constraint proposed here, i.e. Eq. 1 without the
requirement d(i, j) ≤ η, will result in communities that
are not spatially contiguous. This is shown in Fig. 2(a)
where the Indian Ocean, eastern Pacific and a part of
the Southern Ocean end up in the same pattern. In fact
such distant regions can be linked by “teleconnection”
patterns; for example at interannual time scales, Indian
Ocean variability is forced by the tropical Pacific through
an atmospheric wave response to El Niño events [12].
Consequently, variability in such regions is often grouped
under the same cluster by community detection or clus-
tering algorithms. In this case it is necessary to further
constrain the graph inference step as shown in Eq. 1.
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The dimensionality reduction of such graph identifies
local and spatially contiguous patterns as shown in Fig.
2(b). Therefore, the additional constraint introduced
in Eq. 1 is a simple but important step when coarse
graining the system. This step allows to reduce the
dimensionality from N = 31141 to N = 19 time series.
Such communities are regionally constrained, therefore
allowing us to answer the following question: how does
the climate system respond to local perturbations? To
answer such question, we leverage the tools presented in
Section II B.

We consider the fluctuation-dissipation relation in its
quasi-Gaussian approximation as shown in Eq. 5. In
the Appendix, Section D we show that the time series
of each community (i.e., mode) follows approximately
a Gaussian distribution, therefore justifying the quasi-
Gaussian approximation. We infer causality up to a
τ∞ = 10 years and show the causal strength Dj (Eq.
12) in Fig. 2(c). The strongest mode of variability
at interannual time scales is in the tropical Pacific, as
expected [6]. Physically, this means that, at interannual
time scales, the variability in the tropical Pacific is able
to influence a larger part of the world compared to other
regions with smaller strength. In what follows we are
going to refer to this region as “ENSO region”.

2. Investigation of few causal interactions

We further analyze the links between three com-
ponents of the system. Specifically, we focus on the
interaction of ENSO, the Indian Ocean (IO) and South
Tropical Atlantic (STA). ENSO is known to drive
climate variability outside the tropical Pacific through
teleconnection patterns and has been studied in many
contributions. The way in which Indian and Atlantic
variability drive SST in the Pacific has been less ap-
preciated in the past and it is currently debated in the
community [100]. Quantification of such linkages is
important to better understand climate variability and
to improve seasonal forecasting.

During an El Niño phase, the anomalous temperature
in the tropical Pacific excites waves in the atmosphere.
Such waves, known as eastward-propagating Kelvin and
westward-propagating Rossby waves, drive changes in
temperature in the whole tropical band [12]. Such causal
links are identified in Fig. 3(a,b), with positive responses
of both the IO and STA regions to perturbations in
the ENSO regions. As expected such positive lead of
ENSO is the strongest in magnitude and much larger
than the other responses in Fig. 3. Interestingly, we find
a (weak) negative link between ENSO and IO in Fig.
3(b) around τ = 30 months, suggesting the emergence
of positive (negative) anomalies in the Indian Ocean
∼ 3 years after La Niña (El Niño) events. The positive
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Communities (Spatially contiguous)(b)

60°S

30°S

0°
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0° 90°E 180° 90°W0°

j (ENSO = 40.2)(c)

0 2 4 6 8 10 12 14

FIG. 2. Community detection of global sea surface tem-
perature in the latitude range [60oS-60oN] and at monthly
temporal resolution. Panel (a): an undirected graph is in-
ferred through Eq. 1 but without the proposed constraint
d(i, j) ≤ η. Then the community detection method Infomap
is applied. Panel (b): same as panel (a) but the undi-
rected graph is inferred through the newly proposed Eq. 1.
Panel (c): causal strength as defined by 12. As expected the
“ENSO” region is the strongest mode in the inferred causal
network. Its strength is reported in the plot title. The re-
sponse functions are computed up to τ∞ = 10 years. Only
the statistical significant responses contribute to the strength
map. Confidence bounds are quantified through Eq. 7 at the
±3σ level.

response around 10 years in Fig. 3(b) is here considered
as a False Positive.

Fig. 3(c) shows that the positive (negative) anomalies
in the STA region, mainly linked to the dynamics of the
Atlantic Niño [101] (see also discussion in [17]), leads
on average to the development of La Niña (El Niño)
conditions as recently argued in the literature [102–104].

The IO pattern in our study (see pattern z in Figure
3) mainly identifies what is known as the Indian Ocean
Basin (IOB) mode [65]. The IOB mode has been
traditionally considered as simply forced by ENSO.
Nonetheless, recent studies have revealed how the IOB
can also drive ENSO variability. Specifically, it has
been demonstrated how a strong IOB warming can in
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fact contribute to central Pacific cooling further driving
a transition to a La Niña state [100, 105, 106]. Such
negative link is correctly identified by the proposed
framework (see Fig. 3(d)) but does not show up in
correlation-only analyses (see for example Fig. 11(b) in
[68]).

As discussed also in [100] these results suggest an
increase in potential predictability of ENSO variability
when considering the non-local interactions with the
Indian Ocean and tropical Atlantic basins.

Finally, in Fig. 4 we show the link maps for four modes:
ENSO region, Indian Ocean (IO), South and North Trop-
ical Atlantic (STA and NTA respectively). Such maps
show values of Dj→k (Eq. 10) up to a τ∞ = 6 months.
Fig. 4(a) quantifies the cumulative response of any re-
gion given perturbations in the ENSO region. We notice
that such map is qualitatively similar to the first Empir-
ical Orthogonal Function of global SST (see for exam-
ple Fig. 4 in [107]). The framework allows to examine
causal linkages from/to any region of the system. Figures
4(b,c,d) show the cumulative degree of causation respec-
tively from IO, STA and NTA regions to any other region
in the world. In other words, such maps allow to sum-
marize the cumulative response of the whole globe, given
small, local perturbations to any region xj of choice.
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FIG. 3. x: ENSO mode. y: South Tropical Atlantic. z: Indian Ocean. Panel (a,c): causal link x → y and y → x. Panel
(b,d): causal link x → z and z → x. Response functions have been computed up until τ∞ = 10 years. Confidence bounds are
quantified through Eq. 7 at the ±3σ level. Responses in between the confidence bounds are here considered as spurious.
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V. CONCLUSIONS AND DISCUSSION

We introduced a novel framework for causal inference
in spatiotemporal climate fields. The causal inference
step, based upon ideas of Baldovin et al. [1], and in
line with [21, 44], frames the problem of causality in
the formalism of linear response theory [88]. Here, we
further developed these ideas by proposing an analytical
null model for the fluctuation-dissipation relation. The
model allows to distinguish between true and spurious
response functions estimated from finite data, with ap-
plicability not restricted to climate. The time-dependent
causal graph is inferred after coarse-graining the system.
This step, based on community detection, is used to
reduce the dimensionality of a spatiotemporal field in
terms of regional “modes” of variability. Such “modes”
are defined as regionally constrained sets of time series
with large average pairwise correlation. The dimension-
ality reduction and the causal inference steps allow to
study how local perturbations can propagate through
the system and impact remote locations.

We discuss a few important limitations and caveats
that may hinder interpretations of results in future
studies.

a. The case of hidden variables. The fluctuation-
dissipation formalism identifies causal links when we
have access to the whole state vector x. This is often
not the case. This is a problem common to every
causal inference method. A “solution” is to include
the important variables for the phenomena we want
to explain. In this work, we based our analysis on
sea surface temperature (SST) building on ideas first
proposed by Hasselman, K. (1977) [95] where the fast
atmospheric variability can be considered as noise,
forcing the (slower) deterministic ocean dynamics. This
is a great simplification and should be considered when
interpreting results. The question of how many variables
are enough to consider the system as Markovian is
an old problem with warnings discussed at least since
Onsager and Machlup (1953) [108]; see also Section
IVB in [1]. Quite interestingly, [1] also showed that
applying Takens theorem [109] to reconstruct the state
space vector may not always help. The main reason is
that Takens embedding theorem, proven for determinis-
tic systems [109], fails for general stochastic processes [1].

b. Computation of the inverse covariance matrix
C(0)−1. Consider a dynamical system x ∈ RN,T , N is
its dimensionality and T is the length of each time series
xi(t). If N > T , the covariance matrix C(0) ∈ RN,N

will not be full rank, and therefore it will not have
an inverse. Generally, the covariance matrix can be
ill-conditioned and the computation of the inverse
C(0)−1 will result in large errors. This point has been
described in [51, 54] and more formally in [110, 111] in
the context of the fluctuation-response formalism; but

it is a general problem in many fields, see for example
[112, 113]. Therefore, the proposed framework should
be applied for systems x ∈ RN,T with T >> N , i.e., the
number of samples much larger than the dimensionality
of the system. As a simple test, when computing
responses with the quasi-Gaussian approximation
R(τ) = C(τ)C(0)−1 we recommend to check R(0) = I
(at least up to a certain numerical accuracy), I being
the Identity matrix. In general, dimensionality reduction
steps (as proposed in this paper) allow to reduce the
number of time series N to values much smaller than
T , allowing for trustworthy computations of C(0)−1 [51].

c. Quasi-Gaussian approximation. The quasi-
Gaussian approximation considered in this study (see
Eq. 5) has been shown to work especially well in many
climate applications, see [53] and references therein.
However, generally, we suggest checking the data’s
underlying probability distribution before the analysis.
This may be important, especially for paleoclimate
applications where climate variability shows a vast range
of spectral peaks with no clear time-scale separation. An
example is the work shown in [114], where the authors
analyzed the causal link between CO2, temperature
(T ) and insolation in the last 800 kyr. Distributions
of both CO2 and T in the last 800 kyr are strongly
non-Gaussian. The solution was to high-pass filter
the data and focus on high-frequency variability, with
the hypothesis of slow time scales being linked to the
external forcing and faster time scales to the internal
system’s variability. This was shown to be enough to
recover Gaussian distributions [114]. In this work, we
have shown that the distributions of the time series
analyzed can be reasonably approximated by Gaussians
(see Appendix D) justifying the application of the
methodology shown in Section II B. A generalization
to nonlinear systems is provided by formula 3, as
long as the probability distribution ρ(x) is known. In
specific cases, we note that it may be possible to apply
transformations to strongly non-Gaussian fields and still
use the quasi-Gaussian approximation explored here. An
example is the precipitation field, where a logarithmic
scaling can help recover Gaussian-like distribution [115].

The methodology proposed here can be potentially
applied to study the dynamics of any climate field,
at least given the assumptions and limitations listed
above. It serves as a useful, rigorous framework to
simplify the description of complex, high-dimensional
dynamical systems in terms of few entities and their
linkages, aiming to better understand the system’s
dynamics. Differently from other methods for causal in-
ference adopted in climate, it scales to high-dimensional
datasets. Moreover, the method and the proposed null
model have a clear physical interpretation and can be
formalized via analytical formulas. This allows to infer
causality avoiding many heuristics and parameters.
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The application explored here in Section IVC allowed
us to detect well-known links in climate, such as the
influence of tropical Pacific variability onto other basins,
as well as other linkages, such as the lead of sea surface
temperature variability in the Indian Ocean to the
Pacific basin, which received less attention in the liter-
ature [100]. Additionally, we showed how the “strength
maps” and “link maps” as shown in Fig. 2(c) and
Fig. 4 summarize cumulative causal interactions across
time and space in a comprehensive and interpretable way.

We focused on the sea surface temperature field as the
statistics of modes of variability and their linkages in this
field have been investigated in many previous studies,
therefore offering a good test case for the methodology.
Importantly, previous studies have focused on a few
modes at a time. Here we showed that the methodology
allows to study causal linkages among regions in a
comprehensive framework, where all modes of variability
and their interactions are studied simultaneously.

Examples of future work range from quantification
of drivers of sea level change, such as basin-scale
adjustments in the North Atlantic driven by Rossby
waves, to studying the evolution of climate modes
and their linkages in paleoclimate simulations, with
time-dependent orbital and trace-gases forcings (e.g.,
[16]), to non-local drivers of precipitation. Additionally,
the proposed framework offers a way to evaluate new
generations of climate models in terms of their emergent
causal structure rather than statistical properties only;
for example, by assessing the impact of new sub-grid
parametrizations onto the large scale dynamics.
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Appendix A: Dimensionality reduction in climate.
Limitations of current methods and proposal

1. Two goals in dimensionality reduction studies

We note that the use of dimensionality reduction in
applications of linear response theory can be leveraged
with (at least) two different goals in mind. In the case
of very high dimensional systems as for General Circu-
lation Models (GCM), applications of the fluctuation-
dissipation response formalism is practically impossible.
The usual solution in the climate literature has been
to construct response operators in a low-dimensional
space spanned by many Empirical Orthogonal Functions
(EOFs or Principal Components) [116]; usually, order 103

EOFs in order to explain at least 90% of the total vari-
ance. Results computed in the low dimensional space are
then transformed back to the original space [51, 52, 54].
This computational strategy has been shown to be suc-
cessful in many applications (see [51, 52]). A second pos-
sible goal of dimensionality reduction is to simplify the
problem in hand in terms of very few components and
apply the linear response formalism directly on those en-
tities. In this case we are interested in studying directly
the coarse-grained version of the system. This adds to
interpretability and to a first order understanding of the
system’s dynamics. This second case is the one consid-
ered in this paper.

2. Few limitations of common methods and
proposal

Traditionally, dimensionality reduction in climate
studies is done through Principal Component Analysis
(PCA) [116]. PCA, or Empirical Orthogonal Function
(EOF) analysis [117] as a useful, first order way to
reduce the dimensionality of the system based on the
singular value decomposition (see e.g., [118]) of the data
matrix. However, the resulting patterns suffer from few
drawbacks: first, EOFs are orthogonal by definition.
Such constraint hamper their interpretation and make
it difficult to distinguish between physical or purely
statistical modes [79, 119]. A possible solution has been
to rotate the EOFs, such as in [120]. Rotated-EOFs
have been found to be sensitive to the rotation criterion,
normalizations and number of loadings (see [79, 121]).

Another drawback comes from linearity. Mani-
fold learning algorithms aim in addressing this issue
by identifying low-dimensional representations of a
high-dimensional system accounting for non-linearities
(curved manifolds) [122]. Examples range from the
Isomap algorithm [123] to the more recent t-SNE
[124], UMAP [125] to the PHATE algorithm [126] and
ROCK-PCA [127]. Finally, deep learning tools such as
autoencoders can be explored for dimensionality reduc-
tion [128] and found applications in climate science [129].

https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference
https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference
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Dependent on the goal in mind (see Section A1),
a possible limitation shared by all these tools when
applied to global climate data is that they decompose
a field in terms of global (in longitude-latitude maps)
modes. However, physically, climate dynamics can be
often thought of as a set of remote connections driven
by local phenomena (perturbations). Given so, common
practice in climate science has been to define “climate
indices” as time series averaged in specified regions (i.e.,
“boxes”). Known examples are the Niño3.4, the Indian
Ocean Dipole (IOD) index etc. However, a framework
for automated identification of proxies of such indices
is needed as the locations of such regions, or “boxes”,
may be not relevant for the study of future (or past)
climates. An example can be found in [16, 130, 131]
where the authors showed the emergence of an El
Niño-like variability in the Indian Ocean during the Last
Glacial Maximum, the last 6000 years and in future
projections. In this sense, known indices identified in
the current climate are potentially less meaningful in
past and future climates.

A method proposed to do so is δ-MAPS [67]. Given
a climate fields, δ-MAPS identifies spatially contiguous
clusters. The method has proven to be useful in climate
studies with applications ranging from model evaluation
[68, 69], shifts in climate modes in the last 6000 years
[16, 19], sea level budget at regional scale [70], marine
ecology [71] and ecosystem dynamics [72]. In the case
of relatively low dimensional fields (e.g., global fields
at 2◦ by 2◦ spatial resolution) δ-MAPS shows excellent
performance. However, a known drawback is that it
does not scale well with high-dimensional datasets
(i.e., large number of grid cells). Additionally, it can
show sensitivity to one of its parameters in the domain
identification stage, so that often, many exploratory
tests are needed to explore sensitivity.

When working with very high dimensional fields, it is
often useful to consider fast and scalable algorithms. In
the last two decades, climate data analysis have focused
on fast methodologies stemming from the complex
network literature [74]. An example is the work of [79]
where the authors focused on the community detection
method “Infomap” [76, 77, 132] to identify communities
in the HadISST [133] sea surface temperature dataset.
Such methods allow to find patterns that are not
necessarily orthogonal. Furthermore, they are fast,
memory efficient and scale well with the dimension-
ality of the dataset. The main issue is that, similar
to manifold learning algorithms, community detection
algorithms are not constrained to be spatially contiguous.

In this paper we showed that adding a simple con-
straint on spatial distances is enough to enforce the
identification of “local” communities (see Section IIA 1).
This allows to leverage computationally fast and robust

methods such as community detection for dimensionality
reduction strategies in climate. Differently from δ-MAPS
[67], the identified communities cannot overlap with each
other. We find however that conclusions found in previ-
ous studies using δ-MAPS (see [68] for example) do not
strongly depend on clustering overlapping. The frame-
work proposed here in Section IIA is then leveraged as
a much simpler (and therefore more robust), practical
framework to the problem of identification of regionally
constrained modes.

Appendix B: A null model for the
Fluctuation-Dissipation relation. Analytical

derivation of the confidence bounds

This work proposes a novel null model for the
Fluctuation-Dissipation relation (see 6). In the null
model, every variable xj and xk is independent,
and therefore the expected value of each response
E[Rk,j(τ)] = 0 for j ̸= k by construction. Nonethe-
less, estimating such responses by R = C(τ)C(0)−1 (see
II B 2) using time series of finite length T simulated by
the null model, will give rise to spurious results diverg-
ing from the expected value E[Rk,j(τ)]. In Eq. 7 of the
main text we showed the analytical probability distri-
bution of Rk,j(τ). The main assumption in this deriva-
tion is that responses Rk,j(τ) follow a Normal distribu-
tion. Therefore the expected value E[Rk,j(τ)] and vari-
ance Var[Rk,j(τ)] uniquely define the probability density
ρ(Rk,j(τ)). Here we present the derivation of such for-
mula.

1. Notation adopted in this section

In order to simplify and ease the derivation, it is use-
ful to adopt a simpler and more appropriate statisti-
cal formalism. The symbols adopted in this section re-
late to the ones used in the previous ones as follows:
E[X] = ⟨X⟩ represents the expected value of a random
variable X. This is equal to the ensemble average con-
sidered in the previous sections. Consequently, Var[X] =
E[(X−E[X])2] represents the variance of a random vari-
able X. Finally, Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]
represents the covariance of two random variables X
and Y . We are going to refer to the null process as
x = [x1(t), x2(t), ..., xN (t)] (rather than x̃ as in 6). Fi-
nally, each time series xj(t) is here considered to be scaled
to zero mean and unit variance. This step greatly sim-
plifies the derivation. At the end of this section, we pro-
vide the general formula for processes that are not unit-
variance.
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2. Analytical derivation

Consider a long trajectory x ∈ RN,T defined by the
forward iteration of the null model in Eq. 6. The
true mean, and covariances at lag τ of each individ-
ual time series in x are given by E[xj(t)] = 0 and
E[xk(t + τ)xj(t)] = ϕτ

kδk,j respectively. Where ϕk is
the lag-1 autocorrelation of time series xk(t) and the
Kronecker delta δk,j differs from zero only in the case
j = k.

We note that the numerical estimation of both C(τ)
and C(0)−1 will lead to spurious terms in R(τ). We then
rewrite the covariance matrix C(τ) estimated through
time averages as a sum of the expected value E[C(τ)]

plus some small Gaussian residual Ĉ(τ) as:

C(τ) = E[C(τ)] + Ĉ(τ) = Dτ
ϕ + Ĉ(τ). (B1)

Where Dτ
ϕ is a diagonal matrix with component (i, j)

defined as (Dτ
ϕ)i,j = ϕτ

i δi,j . The decomposition (Eq.

(B1)) applies to the matrix C(0) as well with D0
ϕ = I

where I is the Identity matrix. The main difficulty is that
we are not interested in C(0) but in its inverse C(0)−1.
By assuming relatively small residuals (true for time se-
ries with T >> 1), we can approximate an inverse of
the estimated covariance matrix C(0)−1 using Neumann
series [134] as:

C(0)−1 = (I + Ĉ(0))−1 ≈ I − Ĉ(0). (B2)

Where we only retained the first term in the Neu-
mann series. An estimator of the null response R(τ) =
C(τ)C(0)−1 can be then written as

R(τ) = C(τ)C(0)−1 ≈ C(τ) +Dτ
ϕ(I −C(0)). (B3)

Where we neglected the term Ĉ(τ)Ĉ(0), a reasonable
step in the presence of small residuals, true for time series
with length T >> 1. To derive the statistical properties
of the estimator in Eq. B3, it is useful to rewrite such
formula in terms of each component j and k.

Rk,j(τ) ≈ Ck,j(τ) + δk,jϕ
τ
k − ϕτ

kCk,j(0). (B4)

The final step is to derive the expected value E[Rk,j(τ)]
and Var[Rk,j(τ)] of Eq. B4, thus uniquely defining the
probability distribution of Rk,j(τ), under the assumption
of Gaussian statistics.

a. Expected value and variance of the response estimator

The expectation of the response estimator proposed in
B4 can be derived as

E[Rk,j(τ)] = E[Ck,j(τ)] + δk,jϕ
τ
k − ϕτ

kE[Ck,j(0)]

= δk,jϕ
τ
k + δk,jϕ

τ
k − ϕτ

kδk,j

= δk,jϕ
τ
k.

(B5)

The variance of the response estimator proposed in B4
can be derived as

Var[Rk,j(τ)] = Var[Ck,j(τ)− ϕτ
kCk,j(0)]

= Var[Ck,j(τ)] + ϕ2τ
k Var[Ck,j(0)]

− 2ϕτ
kCov[Ck,j(τ), Ck,j(0)].

(B6)

We remind the reader the following useful equality:
the covariance Cov[X,Y ] of two random variables X and
Y can be rewritten as Cov[X,Y ] = E[XY ] − E[X]E[Y ].
We now compute the variance of the response estimator
in Eq. B6. To do so, we first need to provide an ex-
pression to terms Var[Ck,j(τ)] and Cov[Ck,j(τ), Ck,j(0)].
Such terms can be computed as follows:

Var[Ck,j(τ)] = E[Ck,j(τ)Ck,j(τ)]− δk,jϕ
2τ
k

=
1

T 2

T∑
t′,t′′=1

E[xk(t
′ + τ)xj(t

′)xk(t
′′ + τ)xj(t

′′)]− δk,jϕ
2τ
k

=
1

T 2

T∑
t′,t′′=1

(
E[xk(t

′ + τ)xk(t
′′ + τ)]E[xj(t

′)xj(t
′′)]

+ E[xk(t
′ + τ)xj(t

′)]E[xk(t
′′ + τ)xj(t

′′)]

+ E[xk(t
′ + τ)xj(t

′′)]E[xj(t
′)xk(t

′′ + τ)]
)
− δk,jϕ

2τ
k

=
1

T 2

T∑
t′,t′′=1

(
ϕ
|t′−t′′|
k ϕ

|t′−t′′|
j + δk,jϕ

2τ
k + δk,jϕ

|t′+τ−t′′|
k ϕ

|t′−τ−t′′|
k

)
− δk,jϕ

2τ
k

=
1

T 2

T∑
t′,t′′=1

(
ϕ
|t′−t′′|
k ϕ

|t′−t′′|
j + δk,jϕ

|t′+τ−t′′|
k ϕ

|t′−τ−t′′|
k

)
.

(B7)
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Cov[Ck,j(τ), Ck,j(0)] = E[Ck,j(τ)Ck,j(0)]− δk,jϕ
τ
k

=
1

T 2

T∑
t′,t′′=1

E[xk(t
′ + τ)xj(t

′)xk(t
′′)xj(t

′′)]− δk,jϕ
τ
k

=
1

T 2

T∑
t′,t′′=1

(
E[xk(t

′ + τ)xk(t
′′)]E[xj(t

′)xj(t
′′)]

+ E[xk(t
′ + τ)xj(t

′)]E[xk(t
′′)xj(t

′′)]

+ E[xk(t
′ + τ)xj(t

′′)]E[xj(t
′)xk(t

′′)]
)
− δk,jϕ

τ
k

=
1

T 2

T∑
t′,t′′=1

(
ϕ
|t′+τ−t′′|
k ϕ

|t′−t′′|
j + δk,jϕ

τ
k + δk,jϕ

|t′+τ−t′′|
k ϕ

|t′−t′′|
k

)
− δk,jϕ

τ
k

=
1

T 2

T∑
t′,t′′=1

(
ϕ
|t′+τ−t′′|
k ϕ

|t′−t′′|
j + δk,jϕ

|t′+τ−t′′|
k ϕ

|t′−t′′|
k

)
.

(B8)

The computation of Equations B7 and B8 re-
quires to compute the following three terms:∑T

t′,t′′=1 ϕ
|t′−t′′|
k ϕ

|t′−t′′|
j ,

∑T
t′,t′′=1 ϕ

|t′+τ−t′′|
k ϕ

|t′−τ−t′′|
k

and
∑T

t′,t′′=1 ϕ
|t′+τ−t′′|
k ϕ

|t′−t′′|
j . To solve such terms we

point out that a summation of type
∑T

t′,t′′=1(ϕkϕj)
|t′−t′′|

will result in T points with value (ϕkϕj)
0, 2(T − 1)

points with value (ϕkϕj)
1 up to 2(T − t) points with

value (ϕkϕj)
t. The summation can be then rewritten

as:
∑T

t′,t′′=1(ϕkϕj)
|t′−t′′| = T +

∑T−1
t=1 (ϕkϕj)

t2(T − t).
Similar reasoning can be applied for all the terms above.

b. Computation of each summation

Sum(I) :

T∑
t′,t′′=1

ϕ
|t′−t′′|
k ϕ

|t′−t′′|
j = T +

T−1∑
t=1

(ϕkϕj)
t2(T − t)

=
T − T (ϕkϕj)

2 + 2(ϕkϕj)(ϕ
T
k ϕ

T
j − 1)

(−1 + ϕkϕj)2
.

(B9)

Sum(II) :

T∑
t′,t′′=1

ϕ
|t′+τ−t′′|
k ϕ

|t′−τ−t′′|
j

=

T−1∑
t=1−T

ϕ
|t+τ |
k ϕ

|t−τ |
j (T− | t |)

=

T−1∑
t=1

ϕ
(t+τ)
k ϕ

|t−τ |
j (T − t)︸ ︷︷ ︸

Sum(a)

+

0∑
t=1−T

ϕ
|t+τ |
k ϕ

(−t+τ)
j (T + t)︸ ︷︷ ︸

Sum(b)

(B10)

Both summation Sum(a) and Sum(b) can be further
split in sums of simple geometric series:

Sum(a) :

T−1∑
t=1

ϕ
(t+τ)
k ϕ

|t−τ |
j (T − t)

= ϕτ
kϕ

τ
jT

τ∑
t=1

(ϕkϕ
−1
j )t − ϕτ

kϕ
τ
j

τ∑
t=1

(ϕkϕ
−1
j )t · t

+ Tϕτ
kϕ

−τ
j

T−1∑
t=τ+1

(ϕkϕj)
t − ϕτ

kϕ
−τ
j

T−1∑
t=τ+1

(ϕkϕj)
t · t.

(B11)



18

Sum(b) :

0∑
t=1−T

ϕ
|t+τ |
k ϕ

(−t+τ)
j (T + t)

= Tϕ−τ
k ϕτ

j

−τ∑
t=1−T

(ϕ−1
k ϕ−1

j )t

+ ϕ−τ
k ϕτ

j

−τ∑
t=1−T

(ϕ−1
k ϕ−1

j )t · t

+Tϕτ
kϕ

τ
j

0∑
t=−τ+1

(ϕkϕ
−1
j )t

+ ϕτ
kϕ

τ
j

0∑
t=−τ+1

(ϕkϕ
−1
j )t · t.

(B12)

Sum(a) and Sum(b) are composed by geometric series
and can be easily solved.

Sum(III) :

T∑
t′,t′′=1

ϕ
|t′+τ−t′′|
k ϕ

|t′−t′′|
j

=

T−1∑
t=1−T

ϕ
|t+τ |
k ϕ

|t|
j (T− | t |)

=

T−1∑
t=1

ϕt+τ
k ϕt

j(T − t)︸ ︷︷ ︸
Sum(c)

+

0∑
t=1−T

ϕ
|t+τ |
k ϕ−t

j (T + t)︸ ︷︷ ︸
Sum(d)

(B13)

Sum(c) and Sum(d) are composed by geometric series
and can be easily solved.

Sum(c) :

T−1∑
t=1

ϕt+τ
k ϕt

j(T − t)

= Tϕτ
k

T−1∑
t=1

(ϕkϕj)
t − ϕk

T−1∑
t=1

(ϕkϕj)
t · t.

(B14)

Sum(d) :

0∑
t=1−T

ϕ
|t+τ |
k ϕ−t

j (T + t)

= Tϕ−τ
k

−τ∑
t=1−T

(ϕ−1
k ϕ−1

j )t + ϕ−τ
k

−τ∑
t=1−T

(ϕ−1
k ϕ−1

j )t · t

+ Tϕτ
k

0∑
t=−τ+1

(ϕkϕ
−1
j )t + ϕτ

k

0∑
t=−τ+1

(ϕkϕ
−1
j )t · t.

(B15)

Sum(c) and Sum(d) are composed by geometric series
and can be easily solved.

c. Final result

We aim in computing the variance of the response esti-
mator Var[Rk,j(τ)] as shown in Eq. B6. We rewrite the
expression in function of the three summations Sum(I),
Sum(II) and Sum(III) solved in the previous section.

Var[Rk,j(τ)] =
1

T 2

(
Sum(I)

+ ϕ2τ
k · Sum(I)(τ = 0)

− 2ϕτ
k · Sum(III)

)
+

δk,j
T 2

(
Sum(II)

+ ϕ2τ
k Sum(II)(τ = 0)

− 2ϕτ
k · Sum(III)

)
.

(B16)

Where Sum(I)(τ = 0) and Sum(II)(τ = 0) evaluate
Sum(I) and Sum(II) in τ = 0.

We focus on the asymptotic case T >> 1 and remind
the reader that |ϕkϕj | < 1. The leading order of the
solution is as follows:

Var[Rk,j(τ)] =
ϕ2τ
k − 1

T
+

2

T

(1− ϕτ
kϕ

τ
j

1− ϕkϕj

)
−2ϕτ

k

T

(
ϕk

ϕτ
j − ϕτ

k

ϕj − ϕk

)
.

(B17)
Finally, we note that in the case of ϕk = ϕj in Eq. B17

we substitute the term ϕk
ϕτ
j −ϕτ

k

ϕj−ϕk
with the limit:

lim
ϕj→ϕk

ϕk

ϕτ
k − ϕτ

j

ϕk − ϕj
= ϕτ

kτ. (B18)

Equation B17 assumes that each time series has been
previously normalized to zero mean and unit variance.
In the case of non-standardized time series xi(t) we need
to account for contributions coming from the variances
σ2
i . This can be simply done by correcting equation Eq.

B17 as: (σ2
k/σ

2
j ) · Eq. B17 (see also Eq. 15 in [1]).

Appendix C: Confidence bounds. Numerical vs
analytical

We consider the system in Eq. 9 and show all the esti-
mated responses Rk,j , their ground truths and the confi-
dence bounds in Figure 5. Importantly, we compare the
analytical confidence bounds presented in 7 with their nu-
merical estimation as shown in Section IIC 1. All bounds
are set to ±3σ.



19

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Re
sp

on
se

x1 -> x1
Response: Estimated
Response: Ground Truth
±3  Conf. Bounds Numerical
±3  Conf. Bounds Analytical

0 5 10 15 20
0.01
0.00
0.01
0.02
0.03
0.04
0.05

x2 -> x1

0 5 10 15 20

0.010
0.005
0.000
0.005
0.010

x3 -> x1

0 5 10 15 20
0.0
0.1
0.2
0.3
0.4
0.5

Re
sp

on
se

x1 -> x2

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

x2 -> x2

0 5 10 15 20
0.015
0.010
0.005
0.000
0.005
0.010
0.015

x3 -> x2

0 5 10 15 20
lag

0.0
0.1
0.2
0.3
0.4
0.5

Re
sp

on
se

x1 -> x3

0 5 10 15 20
lag

0.01
0.00
0.01
0.02
0.03

x2 -> x3

0 5 10 15 20
lag

0.0
0.2
0.4
0.6
0.8
1.0

x3 -> x3

FIG. 5. Comparing the confidence bounds estimated numerically as in Section II C 1 and the analytical solution as shown in
Eq. 7 for the simple linear Markov model shown in Eq. 9. Each panel shows the response Rk,j representative of the causal link
xj → xk. “Ground truth” of the response is computed as R(τ) = Mτ . Blue lines are responses estimated through temporal
averages: for this step we use a long trajectory of length T = 105 simulated by system in Eq. 9. Red dots indicate the
confidence bounds computed numerically using B = 104 ensemble members of the null model as shown in IIC 1, see Section
IIC 1. The black dashed line is the analytical solution as in Eq. 7. Confidence bounds are set to ±3σ. All estimated responses
(i.e. blue curves) in between the confidence bounds are here considered as spurious.
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Appendix D: Histograms of each mode xi(t) in the
global SST field

Histogram of signals xi(t) defined as shown in Section
IIA 2 for each community/mode i in the global dataset,
see IVC. Each xi(t) has been first centered to zero mean
and than standardized to unit variance. A Gaussian fit
is shown in red. The plot shows that the quasi-Gaussian
approximation shown in II B 2 is indeed relevant for the
system studied.
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FIG. 6. Probability distributions of each sea surface temperature signal xi(t) at global scale (see Section IVC as defined in
Section IIA. Each signal xi(t) is first centered to zero mean and standardized to unit variance; therefore the x-axis represents
degC per standard deviation. Each community is here referred to as “Mode i”. A Gaussian fit is shown in red on top of each
histogram.
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