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1. INTRODUCTION

The problem of studying two-dimensional turbu-
lence is very important in geophysical f luid dynamics,
since the atmosphere and ocean are quasi-two-
dimensional. There are two key problems in geophys-
ical f luid dynamics: weather forecasting and climate-
change forecasting. From the mathematical stand-
point, the first problem is related to studying the
behavior of a solution to a system on a finite time
interval. To justify this problem, it suffices to have
global solvability theorems and theorems of conver-
gence of solutions to finite-dimensional approxima-
tions to a solution to the differential problem. Theo-
rems of this type exist for the two-dimensional ideal
and viscous f luid equations [2, 9, 20, 24]. However,
constants of convergence (if they are defined), as a
rule, exponentially depend on the time interval on
which the problem is studied; when this interval tends
to infinity, these theorems lose their meaning. These
situations arise when we study climate simulation
problems on an arbitrarily long time interval. There-
fore, the problem of studying the two-dimensional
fluid dynamics on an arbitrarily long time interval is a
key problem in climate theory. Clearly, these dynamics
are different for a viscous f luid (dynamics on an
attractor) and an ideal f luid. In the asymptotic case,
when we study the two-dimensional f luid dynamics
for a very small viscosity (the so-called decaying tur-
bulence), the two-dimensional f luid behaves on suffi-
ciently long time intervals like an ideal f luid (see, for
example [7, 8, 14, 26]).

In real problems of weather forecasting and climate
theory, we deal with a quasi-two-dimensional f luid
with forcing and dissipation; from this standpoint,
two-dimensional ideal f luid problems seem to be quite
academic. However, this is far from the case: we
should bear in mind that, for example, there are so-
called inertial ranges in simulated energy distributions
over the spectrum, in which the dissipation and forcing
are small and the fluid behaves like an ideal one [17].
The characteristic features of the behavior of an ideal
f luid can also be observed in other characteristics of a
viscous f luid, on which we dwell below. From this
point of view, studying the ideal f luid dynamics is not
only an academic problem, but also a problem that is
essentially useful in practice. Since the practical prob-
lems of weather forecasting and climate theory can be
solved only numerically, the problem of studying the
properties of finite-dimensional approximations of the
original differential problem is very important [10, 15,
18, 28]. When studying approximations of the two-
dimensional ideal fluid equations, the condition that
these approximations belong to the class of systems of
hydrodynamic type is natural (in addition to the
approximation–stability condition). Recall that, in [6],
Obukhov called a finite-dimensional system

(1.1)

with respect to the unknown  a system
of hydrodynamic type if it satisfies the following three
requirements:

(1) System (1.1) is quadratically nonlinear;

== , = 0
0( )i

ti
du F u u u
dt

= , , ...,1 2[ ]nu u u u
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(2) The phase f low is incompressible:

and
(3) The system has at least one quadratic conserva-

tion law , where S is a positive definite
symmetric matrix.

The problem that we deal with in this work is study-
ing the statistical properties of finite-dimensional
approximations of the equations describing the two-
dimensional ideal f luid dynamics that belong to the
class of system of hydrodynamic type in the sense of
the above definition.

Prior to giving a specific statement of the problem,
we briefly dwell on the fundamental properties of the
systems of equations describing the two-dimensional
ideal f luid dynamics. We write the original equations
of the two-dimensional ideal incompressible f luid
dynamics in terms of vorticity and the stream function:

(1.2)

where  is vorticity,  is the stream function,

and  =  +  is the Jacobian. We

consider system (1.2) in a doubly periodic channel 
in the Cartesian system of coordinates; thus, we have

. It is well known [4] that system (1.2) has
the energy conservation law

(1.3)

and infinitely many invariants (Casimirs) of the form

(1.4)

If we assume that , then we have the

enstrophy conservation law

(1.5)

It follows from (1.3) and (1.5) that we have the law
of conservation of the energy-averaged squared wave-
number:

(1.6)

Infinitely many conservation laws (1.4) are equiva-
lent to the preservation of the vorticity distribution
over area [25], which is given by the formula

(1.7)
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∂∑ 0;i

i i

F
u
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∂
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t
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∂ψ ∂ω
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that is,  is an invariant. Provided that we introduce
the notion of information entropy [5], it follows that
the entropy

(1.8)

is an invariant as well.
Since any finite-dimensional approximation, even

one belonging to the class of systems of hydrodynamic
type, cannot have infinitely many invariants, studying
the behavior of the density of the vorticity distribution
over area  is a very interesting and promising prob-
lem for not only an ideal f luid, but also the real atmo-
sphere [5].

We need another definition of entropy [13]; that is,

(1.9)

where  is used to specify an ensemble in the
RSM mean field theory [21, 23] and denotes the dis-
tribution over an area that depends on the spatial
point. Reviews of the RSM theory are given in [7, 13].

Now we consider other characteristics of a quasi-
equilibrium state of an ideal two-dimensional f luid.
These characteristics were studied by different authors
[10, 14, 26, 28]. According to the RSM theory, the
energy in a quasi-equilibrium state is concentrated in
a large-scale coherent structure determined by a sta-
tionary solution to system (1.2):

(1.10)
where the upper line denotes the removal of small-
scale f low components. If we use the variational prin-
ciple of maximization of entropy (1.9) at a given

energy E and an enstrophy , then function F is linear
with the slope, corresponding to the minimum (in
modulus) eigenvalue of the Laplace operator  [13]:

(1.11)
Since the condition

is a sufficient condition for a stationary solution to be
stable [4], we can conclude that the stability criterion
for a condensed stationary solution (1.11) corresponds
in this case to the limit point of the stability test.

According to the point vortex model [27],
relation (1.10) has the form

(1.12)
which also yields that the relation between  and  is
linear for small values of the stream function (large
scales).

ρ ω( )

+∞

−∞

= − ρ ρ ω,ρ ≡ ρ ω∫ ln ( )S d

ρ ω( )

+∞

−∞

= − ρ ρ ω, ρ ≡ ρ , , ω ,∫ ∫ ln ( )
D

S dD d x y

ρ , ,ω( )x y

ω = ψ ,( )F

ω2

λmin

ψ = − λ ψ .� 1 min 1

∂ > − λ ,
∂ψ min

F

ω = α βψ ,sinh( )
ω ψ
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Therefore, the main problems considered in this
study are the following problems:

(1) Studying the vorticity distribution over an area
reproduced by different approximations of the two-
dimensional ideal incompressible f luid equations that
belong to the class of systems of hydrodynamic type;

(2) Studying the quasi-equilibrium coherent struc-
tures reproduced by these finite-dimensional approx-
imations;

(3) Comparing these coherent structures to struc-
tures generated by a viscous f luid with random forcing.

2. DIFFERENCE SCHEMES 
AND PROBLEM-SOLVING METHODS

As a subject of study, we take three difference
schemes approximating Eq. (1.2) and belonging to the
class of systems of hydrodynamic type. The schemes
are constructed based on different representations of
the Jacobian  (see [7, 22] for a detailed descrip-
tion of different methods for constructing the schemes
for (1.2)). It is well known that the Jacobian J can be
written in three representations:

(2.1)

—is the f low form,

(2.2)

—is the first divergence form,

(2.3)

—is the second divergence form.
Based on these three forms, we can construct spa-

tial approximations preserving the enstrophy, energy,
and energy and enstrophy (the Arakawa scheme [11])
by using symmetric approximations of the derivatives
on a uniform mesh. The phase-flow preservation for
these approximations was proved in [15].

The E scheme preserving the energy has the form

(2.4)

where  and  are approximations of  and .
The Z scheme preserving the enstrophy has the form

(2.5)

and the ZE scheme preserving the energy and enstro-
phy has the form

(2.6)

We can easily show that, if the Crank–Nicolson
scheme is used with spatial approximations (2.4),
(2.5), and (2.6) to approximate Eq. (1.2), then all the
conservation laws mentioned above hold at each step
in time. The resulting procedure of time integration
consists of solving the system of nonlinear algebraic
equations with a quadratic nonlinearity of the form

(2.7)

where n denotes the number of the time layer. To find
a numerical solution to this system, we use the method
of simple iterations, which is described in [7] in detail.
The number of iterations is 5, and this ensures the
preservation of the quadratic invariants with a relative
accuracy of 10–4 to 10–3.

3. RESULTS OF NUMERICAL EXPERIMENTS 
WITH SCHEMES APPROXIMATING 

THE IDEAL FLUID EQUATIONS

Prior to discussing the results of numerical experi-
ments, we make several observations.

(1) For infinite-dimensional spaces (differential
statement of the problem), we have an analog of the
embedding theorem [4]

where  is the modulus-minimum eigenvalue of the
Laplace operator. For a finite-dimensional space, in
the case of a uniform square mesh, we can obtain the
relations between the energy and enstrophy in the fol-
lowing way. Let

where  is a scalar product in a finite-dimensional
space. Let  be a symmetric negative definite
approximation of the Laplace operator. We consider
a pair of subspaces that are constant orthogonal, that
is,  and , on which the action of

 is one-to-one. Then we have  and
. Hence, we obtain a two-sided estimate

of the energy level

(3.1)

where the eigenvalues of the matrix  depend on the
parameters of the problem as follows:

ψ, ω( )J
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Thus, when we consider the scheme preserving
only the enstrophy, the energy is bounded from above
by a constant independent of the mesh step:

(3.2)

In this case, the generation of energy, if it occurs,
proceeds on large scales, since the mean square of the

wavenumber  has to decrease. In addition, the

almost complete dissipation of energy is possible [15].
When we consider the scheme preserving only the

energy, the enstrophy satisfies the relation

(3.3)

This relation means that the mean square of the wave-

number  can unboundedly increase as

; that is, an energy cascade toward high wave-
numbers can occur in this scheme.

(2) The relations corresponding to the modulus-
minimum eigenvalue of the Laplace operator acting
on functions defined on a doubly periodic channel are
degenerate, since the two-dimensional eigenspace
corresponds to this eigenvalue. This means that the
form of the coherent structure formed on this sub-
space is not defined unambiguously.

(3) Generally speaking, the results of quasi-equi-
librium distributions depend on the configuration of
the initial state, in particular, on the average wave-
number [18]. If we specify the initial state so that

, then, as was shown in numer-
ous works [7, 15, 28], quasi-equilibrium distributions
over area for systems of hydrodynamic type are deter-
mined by f luctuations with respect to the average state.
This distribution has to be close to a normal one [7],
which also follows form the fact that entropy (1.8) is
maximized on a normal distribution if there is a qua-
dratic invariant (see, for example, [19]).

(4) The convergence to a quasi-equilibrium state in
a system of hydrodynamic type should occur if the
definition of convergence includes filtering, for exam-
ple, averaging over space  (we will average over the
cells consisting of  calculation points) or averag-

ing over time  (Cesáro convergence).

The theory of Cesáro convergence is described in

detail in [1]. We will always indicate which procedure
is used in our numerical experiments.

(5) We studied the Arakawa scheme (ZE) in detail
in [7]. It was shown in this work that the scheme is
equivalent in its properties to the Galerkin method
with eigenfunctions of the Laplace operator as its
basis functions.

Numerical experiments have been performed with
the following parameters for all the schemes (E, Z, and
ZE). The doubly periodic channel  has the size

, and the resolution of the calculation
mesh is  points. The initial vorticity field
consists of  square sections in which the vorticity
is constant and randomly takes a value from the set
{‒1 + a, –1 + 3a, …, 1 – a}, a = 1/64; each value is
selected exactly once. Similar initial data were used in
[7, 8]. The mean square of the wavenumber for these

initial data is . The
calculation has been performed for the long time inter-
val . A complete statistical equilibrium
for all the schemes occurs no later than at the moment
t ≈ 10000.

First we give the results for the scheme with two
invariants (the ZE scheme); thereafter, we compare
this scheme to the other two schemes (the Z and E
schemes).

In the calculation with the ZE scheme, the energy
and enstrophy are preserved with a relative accuracy of

 for the entire calculation time (Figs. 1a, 1b). Fig-
ure 2 shows the vorticity distribution over area  at
the last time moment. It can be seen from Fig. 2 that
the distribution has a Gaussian form. The variance of
the distribution is determined by the initial data and is

. We use the kurtosis  to deter-

mine the closeness of the distribution over area  to
a Gaussian distribution (  for the standard normal
distribution). Figure 3 shows the kurtosis as a function
of time for three distinct resolutions (a standard reso-
lution of  and two more resolutions of

 and ). This coefficient grows
abruptly on the time interval , which is related
to the onset of statistical equilibrium in small scales.
Thereafter, on the long time interval ,
the large scales also come to a complete statistical
equilibrium, and the kurtosis becomes almost  for all
the resolutions (this is not shown in Fig. 3). As a typi-
cal time of equilibrium onset in small scales, we take

αλ = , α = ,

λ = β,β

max 2

min

const is the mesh step,

is a constant determined by the size of the domain.
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236 DYMNIKOV, PEREZHOGIN

Fig. 1. Relative deviations of (a) energy and (b) enstrophy from the initial values and (c) the spectral energy distribution at the last
time moment t = 50000 for three schemes (E, Z, and ZE). Pay attention, the scales of (a) and (b) differ by 6 orders of magnitude.
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Fig. 2. Histogram of the vorticity distribution over area at the last time moment t = 50000 for three schemes (E, Z, and ZE). The
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the time during which the kurtosis attains a value of 3
for the first time. The typical time slowly grows with
increasing resolution ( , where  is the num-
ber of mesh points along one direction) (see Fig. 3).
This is an illustration of the convergence theorem: the
higher the resolution of the calculation mesh is, the
longer the time during which the initial distribution

 is preserved.
Now we describe the properties of a statistical equi-

librium state for the Arakawa ZE scheme. It follows
from the theory that the enstrophy in small scales has to
be equipartitioned among the Fourier harmonics [7].
This fact is confirmed by the numerical experiment:
the energy spectrum has a decreasing power law

 in small scales (see Fig. 1c). It also follows
from Fig. 1c that most energy accumulates in large
scales, which results in the formation of large-scale
coherent structures with a typical size comparable to
the size of the domain (see Fig. 4). Two large vortices
are formed by the time moment , which is fol-
lowed by slow processes of establishing the statistical

.
∼

0 3T N N

ρ ω( )

−
∼

1( )E k k

≈ 200t
IZVESTIYA, ATMOSPHER
equilibrium. Large vortices are close to stationary
solutions of the ideal f luid equations: the 
scatter plot is described by a functional dependence
(see Fig. 5). This functional dependence is close to
linear dependence (1.11); for large values of the stream
function, there are deviations from the linear depen-
dence, thus qualitatively confirming formula (1.12).

Unlike [7], we used time averaging to isolate coher-
ent structures (Cesáro convergence). This became
possible due to the fact that the initial data taken by us
lead to more stationary quasi-equilibrium states: the
drift of large-scale vortices is insignificant.

The scheme with enstrophy as the only quadratic
invariant (the Z scheme) gives results similar to the
results of the ZE scheme (Figs. 1, 2, 4, 5). In this case,
the energy is approximately preserved during the
entire calculation time (see Fig. 1a). A similar result
is described in [12]. Note that other systems of
hydrodynamic type with invariant enstrophy can dis-
sipate the energy, and no coherent structure occurs
[15]. In addition, the generation of energy is possible.

ψ − ω
IC AND OCEANIC PHYSICS  Vol. 54  No. 3  2018
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Fig. 3. Kurtosis of the distribution  for calculations using the ZE scheme with three different resolutions.
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We studied a system of this type but do not give
detailed results here.

As was shown above, the scheme with energy as the
only quadratic invariant (the E scheme) can unlimit-
edly generate the enstrophy. This is the case in the
numerical experiment: the enstrophy level increases
by a factor of 6000 during the onset of statistical equi-
librium (see Fig. 1b). The excess enstrophy accumu-
lates in small scales; this results in the fact that the
energy cascades into the region of high wavenumbers,
IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS 
where the energy is equipartitioned among the Fourier

harmonics (after integrating over the angle in the Fou-

rier space, ) (see Fig. 1c). Consequently,

coherent structures are not formed on large scales

(Figs. 4, 5). Due to the generation of enstrophy, the

variance of the distribution over area  increases

significantly when compared to the ZE and Z schemes

(see Fig. 2). The functional form of the distribution

does not change: its remains Gaussian.

∼( )E k k

ρ ω( )
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Fig. 5. The  scatter plot where the angle brackets denote the averaging over the time interval . The black

line corresponds to the relation : prediction of the theory (1.11) with allowance for .
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4. LARGE-SCALE STRUCTURE 
AND THE VORTICITY DISTRIBUTION OVER 
AREA IN TWO-DIMENSIONAL EQUATIONS 

WITH DISSIPATION AND FORCING

We consider two-dimensional viscous f luid equa-
tions in a doubly periodic channel:

(4.1)

where ,  is external forcing,  is the Rayleigh
friction coefficient, and  is the coefficient of viscos-
ity. The asymptotic properties of this equation were
studied in numerous works (see [4] and the references
therein). Let

(4.2)

be a finite-difference approximation of (4.1) in which

system (4.2) with  and   is a system
of hydrodynamic type. The central question consid-
ered by us in this section is as follows: In what sense are
the asymptotic (statistical) properties of (4.2) deter-
mined by the asymptotic (statistical) properties of the
corresponding system of hydrodynamic type?

The equations for energy and enstrophy in
system (4.1) have the form

(4.3)

(4.4)

Averaging (4.3) and (4.4) over time, we obtain the

average values of energy  and enstrophy :

(4.5)
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(4.6)

Relations (4.5) and (4.6) express the principal dif-
ference between systems (1.2) and (4.1): in the first

case,  and  are determined by the initial data;

in the second case, these values do not depend on the
initial data (in the asymptotics). When solving
Eqs. (4.1), it is useful to use schemes that prevent the
growth of enstrophy. According to (4.5), an increase in
the level of enstrophy results in a reduction in the level
of energy and, consequently, in the growth of the
mean square of the wavenumber. This effect was
demonstrated in [22], where we thoroughly studied
the energy distribution over the spectrum for different
schemes of solving Eqs. (4.1).

As for an ideal f luid, we are interested in character-
istics of system (4.1) such as large-scale coherent
structures and the vorticity distribution over area. Let
the forcing be given on spatial scales so that two iner-
tial ranges can be formed. In these ranges, by defini-
tion, the dissipation should not significantly affect the
formation of the energy distribution over scales; that
is, the f luid has to behave as an ideal f luid. We can
achieve this by choosing the scale of dissipation due to
viscosity much less than the forcing scale and the time
scale of the Rayleigh friction much larger than the
time scale of energy transfer over the spectrum. The
first condition is satisfied for sufficiently small coef-
ficients . It was shown in [7] that, for sufficiently
small , quasi-equilibrium states of a dissipative f luid
are close to the corresponding states of an ideal f luid,
excepting the vorticity distribution over the scales
close to the dissipation scale.

Further, we can obtain from dimensional analysis
that the typical time of energy transfer over the spec-

trum is , where  is the spatial wave-

number and  is the energy density in the wavenum-
ber space. The Rayleigh dissipation becomes significant

on the scale  on which the equality  holds.

, ω + μ ω,ωω = .
α
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μ
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Fig. 6. Vorticity (shown by color) and the stream function (shown by lines) are on the left and the energy spectrum is on the right.

The figures correspond to the last time moment .
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Taking account of the fact that the distribution

 is the case for an inverse energy cascade,
we arrive at the estimate

(4.7)

a similar estimate is given in [3]. On this scale, the cas-
cade is blocked. For the energy in the inverse cascade
to reach scales comparable to the typical scale of the
domain, the coefficient  should be made sufficiently
small. Then, with fixed μ and f, the average energy
attains high values. If  tends to 0, then we can easily
obtain that

(4.8)

where  is the modulus-minimum eigenvalue of
the Laplace operator.

We performed two numerical experiments for
problem (4.1), which we solved by the Arakawa ZE
scheme, with the following parameters (all the param-
eters are made dimensionless [22]): a resolution of

, the δ-correlated random forcing is given

at a wavenumber of 45 and provides energy input per

unit area and unit time at the level of ε = 1.5 · 10–4,

, and the calculation time is .

The difference between the experiments lies in choos-

ing the Rayleigh friction coefficient:  and

. According to (4.7), the scale of energy
cascade blocking in these experiments should differ by
a factor of 253.

Figure 6 shows the energy distribution over the
spectrum in the two experiments. It can be seen from
Fig. 6 that, with a large Rayleigh friction coefficient of
α = 0.012, the energy cascade into the regions of low

wavenumbers is blocked at the wavenumber ;
in this case, there is no quasi-stationary coherent
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structure. With a small Rayleigh friction coefficient
of α = 0.0003, there are already coherent structures
close to those occurring in an ideal fluid (cf. Figs. 4, 6).
The  scatter plot is given in Fig. 7. As in an ideal

fluid, with a small Rayleigh friction, there is a func-

tional dependence  that is close to linear

dependence (1.11) for small  and to a function of the

form  (1.12) for large . In both cases, the vortic-

ity distribution over area is close to a Gaussian distri-
bution (see Fig. 7). It is worth noting that vorticity dis-
tributions over area that are close to Gaussian distribu-
tions also occur when calculating with real
atmospheric data (the 500 mb surface) [5].

5. DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

In this work we studied the statistical properties of
three difference schemes approximating the two-
dimensional ideal incompressible fluid equations and
belonging to the class of systems of hydrodynamic type
introduced by Obukhov. These systems were approxi-
mated in time so that the quadratic conservation laws
accurately hold in the case of accurate arithmetic. It was
shown that, even with a convergence theorem on a
finite time interval for one of the difference schemes
(the Arakawa scheme with two quadratic invariants
being the energy and enstrophy), the schemes basically
cannot reproduce some properties of a two-dimen-
sional ideal fluid when we consider an arbitrarily large
time interval. In particular, this concerns the preserva-
tion of the vorticity distribution over area, the reproduc-
tion of which requires infinitely many invariants (Casi-
mirs). The time interval on which the initial vorticity
distribution over area is approximately preserved
increases slowly with increasing resolution, which nev-
ertheless agrees with the convergence theorem.

ψ − ω

ω = ψ( )F
ψ

sinh ψ
 Vol. 54  No. 3  2018
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Fig. 7. The  scatter plot where the upper line denotes the averaging over cells of  calculation points, is on the left;

the black line corresponds to linear relation (1.11). The distribution over area is on the right; the number of intervals of the histo-
gram is 25, and the black line shows a Gaussian distribution with an equivalent variance. The figures correspond to the last time

moment .
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The scheme preserving only the energy does not
reproduce other important properties of an ideal f luid,
in particular, the formation of a stationary quasi-equi-
librium state satisfying a linear relation between the
vorticity and the stream function when performing a
certain averaging (for example, considering the Cesáro
convergence) and the energy distribution over the
spectrum. As for the scheme preserving only one qua-
dratic invariant being the enstrophy, the results of a
simulation of quasi-equilibrium states of an ideal f luid
using it differ little from the results obtained by the
Arakawa scheme, which can be explained by the exis-
tence of an embedding theorem preventing an energy
cascade toward high wavenumbers.

The following question arises: Is it necessary to
take into account the reproduction of the fundamental
properties of a two-dimensional ideal f luid when sim-
ulating a quasi-two-dimensional viscous f luid with
external forcing? For a viscous f luid, we have a global
solvability theorem and theorems of convergence of
solutions of difference schemes to solutions of differ-
ential problems that have the only quadratic invariant
being the energy when the coefficient of viscosity and
forcing tend to zero (a bad scheme from the standpoint
of reproducing the statistical properties of an ideal
f luid). However, it should be noted that constants in
all these theorems (if they are defined), as a rule,
exponentially depend on the time interval; thus, the
theorems almost cannot help us in studying the above
problem. We can reformulate this problem in terms of
studying the properties of an invariant measure on an
attractor of the system; however, in this statement, the
problem does not become simpler. It is physically clear
that, when we deal with a mesh of a high spatial reso-
lution so that inertial ranges (where the f luid behaves
like an ideal f luid, since the dissipation and forcing in
these regions can be neglected) occur in the energy
distribution over the spectrum, the answer to this
question is positive (at least for an inertial range in
which a direct enstrophy cascade occurs). For a range
in which an inverse energy cascade proceeds (we
assume that the external action is on middle wave-
IZVESTIYA, ATMOSPHER
numbers), there is another problem related to the
Rayleigh friction, which blocks the inverse energy cas-
cade when the typical time of friction is close to the
typical time of the energy cascade over the spectrum in
the interval of blocking. We have shown in this study
that, for small Rayleigh friction coefficients, large-
scale coherent structures do occur; for large coeffi-
cients, there are no structures of this type. This prob-
lem can be important when external forcing compen-
sates the Rayleigh friction completely or in part. This
hypothesis has the right to life, for example, when
studying large-scale blocking cases [16].
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