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Abstract—Contrary to a viscous f luid at high Reynolds numbers, the equations of a two-dimensional ideal
f luid have an infinite number of invariants, the presence of which complicates both its statistical description
and the numerical modeling. In this study, the numerical modeling of quasi-equilibrium states of an ideal
f luid is carried out at a high resolution of 81922 within the framework of two models: the Arakawa approxi-
mations with two quadratic invariants and the approximations of the equations for a viscous f luid in the
asymptotic case of low viscosity. The possibility of application of the theory of Cesaro convergence (time
averaging) for the solution of the problem of unsteadiness of final states and the problem of achievement of
equilibrium states are considered.
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The equations of a two-dimensional ideal f luid
have the form

(1)

where  is the stream function,  is the vorticity, and

 is the Jacobian. We con-

sider these equations on a periodic square .
The equations have laws of conservation of energy

and an infinite number of casimirs

,

among which an important role is played by enstrophy

.

The invariancy of all casimirs is equivalent to the
preservation of distribution of vorticity over the areas

, where  is an element of the area on
which the vorticity belongs to the interval .

∂ω + ψ,ω = , Δψ = ω,
∂

( ) 0J
t

ψ ω
∂ψ ∂ψ∂ω ∂ωψ, ω = − +
∂ ∂ ∂ ∂

( )J
y x x y

Ω = , π 2[0 2 )

Ω

= − ψω∫
1
2

E dx

Ω

= ω∫
n

nC dx

Ω

= ω∫
21

2
Z dx

= γ ω ω/ ( )dS S d dS
ω, ω + ω( )d

The equations of the viscous f luid are obtained by
adding the dissipation term (in this study, we deal with
the biharmonic viscosity) on the right-hand side:

(2)

The finite-dimensional ideal f luid is obtained after
applying discretization having the laws of conservation
of quadratic invariants to Eqs. (1) of an ideal f luid.

In all three systems, large-scale f lows having a sim-
ilar structure are formed and, in fine scales, serious
differences are observed. The possibility of obtaining
quasi-equilibrium states can be explained with the
help of the theory of Kraichnan cascades [8], accord-
ing to which the enstrophy passes into fine scales and
the energy goes into large scales. In the case of a vis-
cous f luid, the enstrophy is dissipated in fine scales,
and the dissipation of energy tends to zero on the time
scales of formation of the large-scale f lows in the case
of asymptotically fine viscosity . Such a sce-
nario is called selective decay [10], and, as a result, the
energy accumulates on the largest Fourier harmonics
forming large-scale coherent structures. The coherent
structures also are formed in an ideal f luid and in its
finite-dimensional approximations; however, con-
trary to the viscous case, the enstrophy is accumulated
in the finest scale of the system and it results in the for-
mation of fine-scale f luctuations, which have no finite
scale in the case of an ideal f luid and are determined
by the scale of the computing grid in the case of finite-
dimensional approximations.

Large-scale coherent structures are close to the
steady solution and, for this reason, have the approxi-
mate dependence . This dependence can be

∂ω + ψ, ω = −νΔ ω, Δψ = ω.
∂
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found with the help of the statistical theory for the
equations of an ideal f luid and its finite-dimensional
approximations because both systems are Hamilto-
nian. In each case, it is possible to use the mean field
theory [12] if only to agree to consider the finite-
dimensional case in the limit of the infinite resolution
[4]. The mean field theory predicts the occurrence of
the equilibrium states described by the average field ,
which sets the spectrum of energy, and by the f luctua-
tions around the average field, which determine the
level of casimirs (hereinafter, the overline designates
space averaging). The predictions of the theory for an
ideal f luid and its finite-dimensional approximations
differ: in the case of an ideal f luid, the arbitrary mono-
tonic function  is possible depending on the
level of casimirs at the initial moment of time and, in
the case of finite-dimensional approximations, the
theory predicts the linear relation , which
means the full condensation of energy on the largest
Fourier harmonic [4]. We note that the states arising
in the numerical experiments are not equilibrium and
have the functional dependence  only
approximately. For this reason, we call them quasi-
equilibrium or final.

In the case of free three-dimensional turbulence,
the problem of the similarity of the large-scale f lows
arising in a viscous f luid and in finite-dimensional
approximations of the ideal f luid is considered in
detail in [5, 7]. Contrary to the two-dimensional case,
in three-dimensional turbulence, the absence of a
wide class of laws of conservation results in the trivial-
ity of equilibrium states (the viscous f luid fades to zero
and, in the finite-dimensional approximations, the
energy is distributed uniformly over the Fourier har-
monics). Nevertheless, it was shown that the large-
scale dynamics proves to be similar in the process of
establishing equilibrium. In the two-dimensional
case, no similar comparison of the two models has
been carried out until now. We present here only the
most modern works devoted to a viscous f luid [11, 6]
and the finite-dimensional approximations [13]. We
compare these two models and pay attention to struc-
tures of the solution recently found in the viscous
fluid, such as the step shape of large vortices and
the presence of fine vortices in quasi-equilibrium
states [6].

Contrary to the predictions of the mean field the-
ory, the final states prove to be unsteady: large vortices
drift [11, 6]. For this reason, we consider the problem
on the type of convergence of solutions of the equa-
tions of an ideal f luid to the equilibrium states. It is
obvious that there can be no convergence of the type

 in the presence of large-scale

ω
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unsteadiness. As an alternative, it is possible to con-
sider the Cesaro convergence:

.

For ergodic systems, such a process converges to
the equilibrium state, i.e., . As can be

seen from this formula, time averaging is one more
way of singling out the average field in addition to
space averaging. Because an ideal f luid is not an ergo-
dic system ( ), we should investigate the coher-
ent structures  and compare them to clas-
sical coherent structures . If we reformulate
the results of the mean field theory in terms of the
Cesaro convergence, it is possible to solve two prob-
lems at once: the problem of achievement of equilib-
rium states and the problem of unsteadiness of final
states. In this investigation, we used the Cesaro-con-
vergence theory described in detail in [1].

The numerical experiments are carried out for the
viscid and inviscid problems at the resolutions of ,

, . The values of biharmonic viscosity are

In both cases, the Arakawa approximation with two
quadratic invariants [2] and the Crank-Nicolson
scheme in time was chosen. The implicit scheme is
solved by the fixed-point iteration with a relative accu-
racy of conservation of quadratic invariants  for
the whole time of calculation. For comparison, the
accuracy amounted to  in [13]. The initial vorticity
field consists of 16  16 steps with constant values of

which are randomly distributed over steps (see Fig. 1),
but each value is encountered only once, and the dis-
tribution is the same for all experiments. The time of
calculation amounts to T = 10 000 at the highest
velocity . If we determine the large eddy
turnover time as , , then the
time of calculation amounted to . At low

resolutions of , , the time of calculation was
doubled in order to be convinced of the establishment
of statistical equilibrium. We designate the space aver-
aging as follows: , where  is the
initial grid and  is the rough grid, each value of
which is obtained by averaging over the area .

In Fig. 1, we show the general view of the solutions
in viscid and inviscid problems at the highest resolu-

Resolution 5122 20482 81922

ν 1.875 × 10–11 7.3242 × 10–14 2.86 × 10–16

→+∞ →+∞
〈ω〉 = 〈ω〉 = ω ,∫0

0

1lim lim ( ') '
t

t

t t
t dt

t
x

→+∞
〈ω〉 = ω0lim t

t

ω ≠ 〈ω〉
〈ω〉 = 〈ψ〉( )G

ω = ψ( )F

2512
22048 28192

−1010

−410
×

ω ∈ − + , − + , .. , − , = ,{ 1 1 3 . 1 } where 1/256i h h h h

≈ .max 0 2V
=eddy max/T L V ≈eddy 30T

≈ eddy315T T
2512 22048

→2 28192 128 28192
2128

×64 64



250

DOKLADY PHYSICS  Vol. 62  No. 5  2017

PEREZHOGIN, DYMNIKOV

tion of . For the inviscid problem, we prelimi-
narily averaged the vorticity field, thus separating the
large-scale coherent structures from the fine-scale
fluctuations. In the solutions, coherent structures are

28192 observed in two characteristic scales: large vortices,
which have the scale of the region, and fine vortices,
which are located in the wavenumber range from 50
to 70. By the moment of time , the formation
of two large vortices is accomplished. Further, the
variability is associated with the destruction of fine
vortices. From the moment  to , the
number of fine vortices decreases from 50 to 6 in the
viscid problem and from 27 to 1 in the inviscid prob-
lem. In the latter case, the fine-scale f luctuations pro-
mote the destruction. Fine vortices were found only
under the highest resolution of .

In Fig. 2, we show the enstrophy spectrum per
Fourier mode for various experiments. In all inviscid
problems in fine scales, the equidistribution of enstro-
phy over the Fourier modes is observed, which agrees
well with the spectral theory [9]. In this region, the
fine-scale f luctuations are concentrated. With
increasing resolution, the left boundary of this region
is displaced to the right releasing ever more large scales
from fluctuations. The enstrophy spectrum in large
scales is practically independent of the resolution or of
the presence of viscosity. Contrary to the mean field
theory, there is no full condensation of energy to the
largest harmonic in the inviscid problem. Moreover,
there is not even the tendency to condensation upon
increasing the resolution 16 times. The high-order
casimirs in the inviscid problem are not conserved,
and their average value in time is practically indepen-
dent of the resolution (figure is not presented).

≈ 2000t

= 1950t = 9950t

28192

Fig. 1. Vorticity field at various moments of time. The average inviscid problem  above and viscous  below.
The values exceeding the limits of the color band are tinted by extreme colors of this band.

t = 0

t = 350 t = 1950 t = 9950

1.0

0.5

Viscid

Inviscid

−0.5

−1.0

0

→2 28192 512 28192

Fig. 2. Enstrophy distribution over the wave-number spec-
trum normalized to one mode , where

, t = 10 000, k is the wave number.
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We study the shape of the coherent structures

considering the scatter plot , which is shown

in Fig. 3. The inviscid problem is preliminarily aver-

aged over space. The averaging  is cho-

sen from the reasons of filtration of all wave numbers

above 64, where the fine-scale f luctuations are located

(see Fig. 2). At low resolutions, the diagram has a sym-

metric form, and the symmetry is violated with

increasing the resolution: sharp bends (corresponding

to the step shape of large vortices) and spikes (corre-

sponding to fine vortices) arise; similar branches of

the diagram for viscid and inviscid problems are

marked in the figure with arrows. With increasing the

resolution in the inviscid problem, the spread in points

with respect to the functional dependence 

gradually decreases, and it evidences that the coherent

structures become ever more steady and approach the

equilibrium states of an ideal f luid with a certain set of

values of invariants [3]. It should be noted that this

functional dependence differs from the theoretical

(linear) because of the incomplete condensation of

energy, which was already reported above.

ω − ψ

→2 2
8192 128

ω = ψ( )F

We consider the process of obtaining coherent
structures with the help of time averaging (Cesaro
convergence). The large vortices drift accomplishing
translatory (the vector connecting two vortices
remains constant) periodic motion along a circular
orbit. In the inviscid problems at low resolutions, this
motion passes into chaotic motion because of the
action of f luctuations on large scales. In the table, the
diameter of the circular drift orbit is listed. The orbit
diameter monotonically decreases with increasing res-
olution; however, this result can be nonuniversal
because, in certain viscous experiments at low resolu-
tions, we found the reverse tendency. In the inviscid

experiment at the highest resolution of , the
orbit diameter is of the same order of magnitude with
the vortex-core size. For this reason, time averaging
results in smoothing the large scales. The resulting

scatter plot  (we do not present the corre-
sponding figure) differs strongly from the classical

: there is no visual similarity, the range of vortic-
ity values is small, and, most importantly, the depen-

dence  is nonmonotonic, which prohibits
the existence of such coherent structures in an ideal
f luid [3].

In summary, the quasi-equilibrium states of the
equations of a viscous f luid and the finite-dimensional
approximations of the equations of an ideal f luid com-
prise fine vortices, while large vortices have a similar
shape and have a step structure. Contrary to the mean
field theory, there is no full condensation of energy in
the finite-dimensional approximations, and the
enstrophy spectrum coincides with the spectrum of

2
8192

〈ω〉 − 〈ψ〉

ω − ψ

〈ω〉 = 〈ψ〉( )G

Diameter of the large-vortex orbit with positive vorticity

Resolution
Orbit diameter

viscid problem inviscid problem

5122 5.67 chaos

20482 1.30 2.5

81922 0.79 1.55

Fig. 3. Scatter plot  at various resolutions: above, space-averaged inviscid problems; below, viscous problems, . 
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the viscous f luid on large scales. The coincidence of
the large-scale dynamics leads us to the important
conclusion that, for the reproduction of the statistical
properties of the viscous f luid, it is unnecessary to pay
attention to the preservation of high-order casimirs as
was done in the mean field theory. It was shown that
the degree of unsteadiness of the large scales (i.e., the
drift orbit) can decrease with increasing resolution;
however, for investigating the possible disappearance
of unsteadiness, it is necessarily a considerably higher
resolution. The application of the Cesaro-conver-
gence theory did not solve the problem of unsteadiness
of the final states because time averaging smooths
physically important large-scale structures.
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