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Abstract
Mesoscale eddies are poorly represented in climate ocean models, and therefore their ef-
fects on the large scale circulation must be parameterized. Classical parameterizations,
which represent the bulk effect of the unresolved eddies, can be improved with new sub-
grid models learned directly from data. Zanna and Bolton (2020) (ZB20) applied an equation-
discovery algorithm to reveal an interpretable expression parameterizing the subgrid mesoscale
fluxes through the components of the velocity-gradient tensor. In this work, we imple-
ment the ZB20 parameterization into the primitive-equation GFDL MOM6 ocean model
and test it in two idealized configurations with significantly different stratification and
topography. In addition, we propose an approach based on spatial filtering to improve
the representation of large-scale energy backscatter and numerical properties of the pa-
rameterization. The ZB20 parameterization led to improved climatological mean flow
and energy distributions, compared to the current state-of-the-art energy backscatter pa-
rameterizations. The ZB20 is scale-aware and can be used with a single value of the non-
dimensional scaling coefficient for a range of resolutions. The successful application of
the ZB20 to parameterize mesoscale eddies in two idealized configurations offers a promis-
ing opportunity to reduce long-standing biases in global ocean simulations in future stud-
ies.

Plain Language Summary

This research focuses on improving the accuracy of ocean models by addressing the
challenges of representing small ocean currents known as mesoscale eddies. These ed-
dies play a crucial role in the Earth’s climate system, but traditional climate models strug-
gle to capture their effects. Here we implemented a new machine-learning parameter-
ization simulating the physics of the mesoscale eddies into the state-of-the-art ocean model.
The parameterization is interpretable and captures key physical process related to the
mesoscale eddies known as energy backscatter. We tested this parameterization in two
idealized ocean scenarios and found that it significantly improves the biases in the rep-
resentation of the mean flow and energetics. We propose new filtering schemes which im-
prove the physical and numerical properties of the parameterization. Accurate represen-
tation of the mesoscale eddies has the potential to resolve long-standing biases present
in global ocean models and thus allow for more reliable climate simulations.

1 Introduction

Mesoscale eddies in the ocean emerge on the spatial scale of the Rossby deforma-
tion radius (Salmon, 1980; Vallis, 2017), which varies in the global ocean from order 100
km near the equator to 10 km near the poles (Chelton et al., 1998). Mesoscale eddies
dominate the kinetic energy (KE) reservoir and are critical for the lateral and vertical
transport of tracers (Redi, 1982; Ferrari & Wunsch, 2009; Uchida et al., 2017). The mo-
mentum and buoyancy fluxes produced by the mesoscale eddies are crucial in strength-
ening the mean flow via upgradient fluxes (R. Greatbatch et al., 2010), setting the strat-
ification (Gent & McWilliams, 1990), and closing the energy budget (Jansen et al., 2019;
Bachman, 2019; Loose et al., 2023).

The direct simulation of mesoscale eddies requires resolving the deformation ra-
dius with a few grid spacings (Hallberg, 2013) and remains unfeasible in the global cli-
mate models (Hewitt et al., 2020; Christensen & Zanna, 2022). Therefore, the system-
atic effect of the unresolved mesoscale eddies must be parameterized to achieve an un-
biased climatological state. Classical parameterizations mimic the bulk (that is, mean)
effect of the mesoscale eddies on the resolved flow and are commonly based on energetic
considerations (D. P. Marshall et al., 2012; Mak et al., 2018). For example, the param-
eterization of Gent and McWilliams (1990) reduces the potential energy by flattening
the isopycnals. Another popular parameterization is the KE backscatter (Thuburn et al.,
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2014; Jansen & Held, 2014; Grooms et al., 2015; Berloff, 2018; Bachman, 2019; Jansen
et al., 2019; Perezhogin, 2020; Juricke et al., 2020; Storto & Andriopoulos, 2021) which
increases the KE of the resolved circulation. The backscatter accounts for the unresolved
upscale energy cascade and can be diagnosed or parameterized with the upgradient mo-
mentum fluxes (that is, fluxes, that sharpen the gradients of the resolved flow).

Recently, machine-learning (ML) methods based on neural networks have been pro-
posed to predict the eddy fluxes directly from data as an alternative to the classical bulk
modeling (Krasnopolsky et al., 2010; Rasp et al., 2018; Yuval & O’Gorman, 2020; Guan,
Chattopadhyay, et al., 2022; Frezat et al., 2022; Sane et al., 2023; Perezhogin et al., 2023;
Yuval & O’Gorman, 2023; Shamekh et al., 2023; Zampieri et al., 2023; Gregory et al.,
2023). ML methods capture not only the bulk effect of the subgrid eddies but also the
instantaneous fields of the diagnosed eddy forcing (Bolton & Zanna, 2019). These meth-
ods are very accurate, but they contain a tremendous number of tunable parameters that
obstructs their physical interpretation. The approach proposed by Zanna and Bolton (2020)
(hereafter ZB20) provided an alternative to both the traditional bulk approach and the
black-box ML modeling by enabling the discovery of a closed-form equation for the eddy
parameterization directly from data.

ZB20 parameterized the mesoscale eddy fluxes through a simple interpretable ex-
pression that has strong ties with physics-based gradient models (Anstey & Zanna, 2017;
Zanna & Bolton, 2020; Jakhar et al., 2023; Khani & Dawson, 2023). The ZB20 param-
eterization was trained on the data of the primitive equation ocean model (MITgcm, J. Mar-
shall et al., 1997) and accurately predicts the eddy fluxes, including the upgradient fluxes
(backscatter), with a skill comparable to neural-network approaches. Once implemented
online, the ZB20 parameterization improves the representation of the mean flow and en-
ergy distributions (Zanna & Bolton, 2020). However, their online simulations were lim-
ited to a simple one-layer shallow water model.

In this work, we implement the ZB20 subgrid parameterization into the primitive-
equation GFDL MOM6 ocean model (Adcroft et al., 2019). In Section 2 we describe ocean
model in adiabatic limit. In Section 3, we describe the ZB20 parameterization and pro-
pose filtering schemes that reduce the grid-scale numerical instabilities and improve the
large-scale KE backscatter. The need for the proposed filtering schemes is clarified in
Section 4 where we evaluate the subgrid KE transfer produced by the ZB20 parameter-
ization both offline and online. In Section 4, we further test the ZB20 parameterization
in an idealized ocean configuration, Double Gyre, and show a reduction of biases in the
mean flow and energetics. In Section 5, we evaluate the ZB20 parameterization for a range
of resolutions and show that it does not require retuning the free parameter. This is mainly
a consequence of the scale-awareness of the free parameter, which is solely a function of
the grid spacing. A more realistic configuration NeverWorld2 (NW2, Marques et al., 2022)
mimicking the global ocean is described in Section 6. Testing in the NW2 configuration
revealed the need for additional tuning required to improve the numerical stability prop-
erties of the parameterization. However, the reduction of biases in energy distributions
and mean flow are also more evident compared to the simpler configuration.

2 Ocean model

We use the GFDL MOM6 ocean model (Adcroft et al., 2019) in an adiabatic limit
with no buoyancy forcing. This allows us to test the direct impact of the new param-
eterization in an idealized setting of a primitive equation model.
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The equations of motion are given by the stacked shallow water equations with con-
stant density in each layer (Marques et al., 2022; Zhang et al., 2023):

∂uk

∂t
+

f + ζk
hk

ẑ× (hkuk) +∇Kk +∇Mk = Fk +Vk + Sk, (1)

∂hk

∂t
+∇ · (ukhk) = 0, (2)

where k is the index of the vertical fluid layer, equal to 1 for the surface layer and to K
for the bottom layer; uk = (uk, vk) is the horizontal velocity, uk and vk are zonal and
meridional velocities; hk is the layer thickness; f is the Coriolis parameter; ζk = ∂xvk−
∂yuk is the relative vorticity; ∇ = (∂x, ∂y) is the horizontal gradient and ∇· is the hor-
izontal divergence, where ∂x and ∂y are partial derivatives along zonal and meridional
directions; ẑ is the unit vector pointing upward; ẑ×uk = (−vk, uk) is the cross prod-
uct; Kk = (1/2)uk · uk is the KE per unit mass. The Montgomery potential is given
by Mk =

∑k
l=1 g

′
l−1/2ηl−1/2, where ηk+1/2 = −H +

∑K
n=k+1 hn is the interface posi-

tion between layers k and k+1 and H(x, y) ≥ 0 is the ocean depth; g′k+1/2 = g(ρk+1−
ρk)/ρ0 is the reduced gravity, where ρk is the density of the fluid layer, ρ0 is the refer-
ence density and g is the gravitation acceleration. The equations of motion in the hor-
izontal orthogonal curvilinear coordinates are discussed in Adcroft et al. (2019).

Fk represents the wind stress and bottom drag. Sk is a subgrid momentum param-
eterization. Vk is the biharmonic Smagorinsky model (below, we omit index k for brevity):

V = −∇ · (ν4∇(∇2u)), (3)

and ν4 = CS∆
4
√
D̃2 +D2, where CS is the non-dimensional Smagorinsky coefficient,

∆ is the grid spacing and D̃ = ∂xu−∂yv is the stretching deformation, D = ∂yu+∂xv
is the shearing deformation. We note that the biharmonic operator used in the MOM6
ocean model has a complicated form and refer the reader to S. M. Griffies and Hallberg
(2000) for more details.

3 Subgrid parameterizations

Ocean models at a coarse grid resolution have strong biases in the representation
of the mean flow and energetics (Hallberg, 2013; Hewitt et al., 2020). They can be cor-
rected by parameterizing the effect of the unresolved (subgrid) mesoscale eddies. In this
section, we describe how to diagnose the effect of subgrid mesoscale eddies on the resolved
flow using a spatial filtering approach (Large Eddy Simulation, LES, Sagaut, 2006; Fox-
Kemper & Menemenlis, 2008; Bachman et al., 2017). We then describe our implemen-
tation of ZB20 parameterization of the subgrid mesoscale eddies and baselines.

3.1 Subgrid forcing

The subgrid mesoscale eddies produce the following subgrid momentum forcing act-
ing on the resolved eddies (Zanna & Bolton, 2020)

S = (u · ∇)u− (u · ∇)u, (4)

where u is the velocity field of the high-resolution model, (·) is a spatial filter used in
the LES approach and ∇ is a discretization of the gradient operator on a coarse grid.
This subgrid forcing modifies the governing equations of the coarse ocean model as shown
in Eq. (1). Note that in the LES approach, we should use u whenever referring to the
solution of the coarse model, but here, for brevity, we omit this notation everywhere apart
from Eq. (4). To enable computations with a coarse ocean model, we should represent
the subgrid forcing as a function of the resolved flow referred to as a parameterization.

The key physical process which is described by the subgrid momentum forcing is
the redistribution of the kinetic energy from subgrid to resolved scales which is referred
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to as a KE backscatter (Frederiksen & Davies, 1997; Berner et al., 2009; Thuburn et al.,
2014; Ross et al., 2023). The backscatter energizes the ocean currents on large scales and
represents the unresolved on a coarse grid upscale energy cascade (Mana & Zanna, 2014).

3.2 Zanna-Bolton parameterization (ZB20)

Zanna and Bolton (2020) introduced the following baroclinic parameterization for
subgrid momentum forcing (referred to as ZB20):

S =

(
Sx

Sy

)
= ∇ ·T = ∇ ·

(
Txx Txy

Txy Tyy

)
=

(
∂xTxx + ∂yTxy

∂xTxy + ∂yTyy

)
, (5)

where the stress tensor T is given by:

T(ζ,D, D̃) = κBC

[
−ζD ζD̃

ζD̃ ζD

]
︸ ︷︷ ︸
Td, deviatoric stress

+
κBC

2

(
ζ2 +D2 + D̃2

)[
1 0
0 1

]
︸ ︷︷ ︸

Th, hydrostatic stress

. (6)

Zanna and Bolton (2020) estimated the free coefficient κBC from their simulation, such
that κBC = −8.723×108m2. Here, we follow the approach of Anstey and Zanna (2017)
and studies on gradient models (Chen et al., 2003; Meneveau & Katz, 2000) to directly
relate the free coefficient to the area of a coarse grid box:

κBC = −γ∆x∆y ≤ 0, (7)

where ∆x and ∆y are local grid spacings along x and y directions, respectively, and γ ≈
1 is a tunable non-dimensional parameter.

We refer the reader to Appendix A for details of the numerical discretization of Eq.
(5), while accounting for the curvilinear coordinates and varying layer thickness.

3.2.1 Low-pass filtering of the stress tensor (ZB20-Smooth)

Incorporation of the ZB20 parameterization can result in generation of the numer-
ical noise near the grid scale. It happens because the energetic contribution of the de-
viatoric stress is zero (Td : (∇u) = 0, see A3 in Appendix A) while the energetic con-
tribution of the hydrostatic stress (Th : (∇u)) is not sign-definite (Zanna & Bolton,
2020). Thus, dissipation near the grid scale is not implemented as a hard constraint. Note
that the energy contribution of the deviatoric stress is not trivial: it redistributes energy
in physical and spectral space (Anstey & Zanna, 2017). The dissipation is often enforced
in gradient-based parameterizations by projecting the predicted stress tensor onto the
dissipative direction (Bouchet, 2003; Balarac et al., 2013; Vollant et al., 2016). However,
these approaches are not suitable for parameterization of mesoscale eddies because their
dominant effect is the KE backscatter on large scales. Thus, we suggest to remove the
contribution of the ZB20 parameterization on the grid scale eddies by low-pass filtering
the stress tensor. The filtered stress tensor will represent the KE backscatter. Filtering
is widely used in mesoscale eddy parameterizations to suppress the numerical noise and
increase the spatial scale of the KE backscatter (Grooms et al., 2015; Juricke et al., 2019;
Bachman, 2019; Perezhogin et al., 2019).

We consider a low-pass convolutional filter defined on 3×3 spatial stencil (”trape-
zoidal filter” in San (2014)):

G =
1

16

1 2 1
2 4 2
1 2 1

 . (8)

The presented filter has the smallest spatial stencil among filters completely removing
the grid harmonics. It will be used as a building block for proposing our filtered ZB20
parameterizations.
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The ZB20 parameterization with low-pass filtered stress tensor (hereafter, ZB20-
Smooth) is given by:

S = ∇ ·G(T), (9)

where G = GN is the low-pass filter which is applied to every component of the stress
tensor T (Eq. (6)), and N is the number of filtering passes of G (Eq. (8)). We choose
N = 4 similarly to Juricke et al. (2019) (see Appendix C for sensitivity to the choice
of N).

3.2.2 High-pass filtering of the velocity gradients (ZB20-Reynolds)

To further enhance the KE backscatter on large scales, we use an additional filter-
ing scheme.

Perezhogin and Glazunov (2023) show that a particular part of the subgrid stress
(Reynolds stress) is responsible for the KE backscatter on large scales. The Reynolds
stress is a part of Germano (1986) decomposition of the subgrid stress and represents
the effect of the eddy-eddy interactions on the mean flow. Based on their results, we pro-
pose a modification of ZB20 parameterization by isolating the backscatter effect through
the use of a high-pass filter on the velocity gradients. Therefore, the modified param-
eterization (hereafter, ZB20-Reynolds) can be expressed as

S = ∇ ·G(T(ζ ′, D′, D̃′)), (10)

where G = GN is the low-pass filter and (·)′ = I −G is the high-pass filter with I be-
ing the identity operator. The computation of the stress tensor in Eq. (10) is done as
follows. First, the velocity gradients ζ, D, D̃ are high-pass filtered to obtain ζ ′, D′, D̃′,
respectively. Then we compute the stress tensor T(ζ ′, D′, D̃′) according to Eq. (6) us-
ing high-pass filtered fields as inputs. Finally, the stress tensor T is low-pass filtered with
the filter G to separate the parameterization tendency from the grid scale. For consis-
tency with the previous section, we choose N = 4.

3.3 Baseline momentum parameterizations

We consider two backscatter parameterizations as baselines. The first baseline is
the KE backscatter of Jansen et al. (2015) (referred to as JH15), already tested in MOM6
(Jansen et al., 2019). It parameterizes the dissipation of the resolved KE with the bi-
harmonic Smagorinsky model. The backscatter of the subgrid KE is parameterized with
the Laplacian viscosity having a negative coefficient. The negative viscosity coefficient
is informed by a local subgrid KE equation.

The second baseline parameterization is a deep-learning CNN model of Guillaumin
and Zanna (2021) (referred to as GZ21). It predicts the subgrid forcing using horizon-
tal velocities and was trained on the global ocean data. It was implemented to the MOM6
ocean model (Zhang et al., 2023) and works together with the biharmonic Smagorinsky
model. GZ21 parameterization energizes the resolved eddies efficiently and consequently
can be tuned to increase the KE of the coarse model up to the KE of the high-resolution
model. Zhang et al. (2023) performed such tuning in the Double Gyre configuration at
every coarse resolution (in the range 1/4o−1/8o). We use their setting but double the
integration time with a single ensemble member.

4 Experiments in Double Gyre configuration

We test subgrid parameterizations in Double Gyre configuration of the MOM6 ocean
model described in detail in Section 3.1 of Zhang et al. (2023). We use their setting but
double the integration time (20 years). The model has two fluid layers and is initialized
at rest. The circulation is driven by wind and equilibrated by the bottom friction. The
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Figure 1. (a) The sketch of the Double Gyre configuration of the MOM6 ocean model; (b)

and (c) snapshots of the relative vorticity in the upper layer, (d) total kinetic energy (summed

over layers). (e,f) The spatial spectra of the eddy kinetic energy (EKE) in the upper and lower

fluid layers. The spectrum is computed in the area shown by the white rectangle. The wavenum-

bers of the deformation radius (rd ≈ 1
f

√
g′ h1h2

h1+h2
) are given by 1/rd and shown by the blue

shading.

computational domain is given in a spherical coordinate system with a bowl topogra-
phy (Figure 1(a)). The Smagorinsky coefficient in all experiments is set to CS = 0.06,
similarly to Jansen et al. (2015, 2019); Zhang et al. (2023); see Appendix C for sensi-
tivity to CS .

The unparameterized simulations (S = 0) for a range of resolutions (1/64o, 1/16o,
1/8o, 1/4o, 1/2o) are shown in Figure 1. The high-resolution model (1/64o) has a grid
spacing that is 10 times smaller than the Rossby deformation radius, and consequently,
it directly simulates the mesoscale eddies (Hallberg, 2013). Coarse ocean models with
a grid spacing approximately equal to the Rossby deformation radius (1/2o–1/8o) have
a reduced eddy activity at all spatial scales in comparison to the high-resolution model.
It follows from the analysis of eddy kinetic energy (EKE) spectrum, see Figure 1(e,f).

ZB20 ZB20-Smooth ZB20-Reynolds

γ 0.5 1.0 2.0

Table 1. The default scaling coefficient γ in the different ZB20-based parameterizations.

In this section, we study how subgrid parameterizations improve biases in energet-
ics and mean flow in a coarse ocean model at resolution 1/4o. The scaling coefficient γ
of the ZB20-based parameterizations which we use in this section is provided in Table
1. The coefficient γ is larger for the filtered than for the unfiltered versions of the ZB20
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parameterization because filtering reduces the magnitude of the subgrid forcing predic-
tion.

4.1 Eddy kinetic energy (EKE) spectrum

10 5 10 4 10 3

wavenumber, m−1

10 5

10 3

10 1

101

103

E
K

E
 s

pe
ct

ru
m

, m
3
/
s

2

k−3

Deformation 
     radius 
  15− 30km

Grid scale
   π/∆x

(a) Upper Layer

1/4o, JH15

1/4o, GZ21

1/4o, ZB20

1/4o, ZB20-Smooth

1/4o, ZB20-Reynolds

1/4o

1/64o

10 5 10 4 10 3

wavenumber, m−1

k−3

(b) Lower Layer

Figure 2. The eddy kinetic energy (EKE) spatial spectrum for the last 10 years of the sim-

ulation: (a) upper layer, (b) lower layer. The unparameterized model (1/4o) is compared to

parameterized models and high-resolution simulation (1/64o). The spectrum is computed in the

region indicated by the white rectangle in Figure 1.

The eddy kinetic energy (EKE) spectrum is one of the metrics that coarse unpa-
rameterized ocean models fail to reproduce (Figure 1(e,f)). The EKE spectrum is de-
fined as a time-averaged spatial power spectrum of the eddy velocities u′ = u − ut,

where (·)
t
is a time-average over the last 10 years of the simulations. All spectra in Dou-

ble Gyre configuration are computed in the white rectangle shown in Figure 1(c) using
a 2D Fourier transform with a Hann window and linear detrending (using xrft package,
Uchida et al., 2023).

The EKE spectra for runs with different subgrid parameterizations are shown in
Figure 2. The ZB20 parameterization without filters has a build-up of energy near the
grid scale, i.e. numerical noise (Figure 2(a)), which results in the deterioration of the EKE
spectrum at large scales in both fluid layers. The proposed filtering techniques (ZB20-
Smooth and ZB20-Reynolds) allow us to attenuate the noise generation. The ZB20-Smooth
and ZB20-Reynolds parameterizations improve the EKE spectrum on large scales by in-
creasing it compared to the unparameterized model and closer to the high-resolution model.
The ZB20-Reynolds parameterization is more efficient in energizing eddies in the upper
layer. The JH15 and GZ21 backscatter parameterizations are more efficient in energiz-
ing eddies near the deformation scale. We note that none of the tested subgrid param-
eterizations reproduce the EKE spectrum on all spatial scales.
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(b) Online

JH15(∇2)

GZ21
ZB20

ZB20-Smooth
ZB20-Reynolds

Smag(∇4)

Subgrid forcing

Figure 3. Kinetic energy transfer by subgrid parameterizations: (a) offline performance on

fields of the high-resolution model (1/64o) filtered and coarse-grained to 1/4o resolution; (b) sub-

grid parameterizations are evaluated online at resolution 1/4o. The black line (subgrid forcing,

Eq. (4)) is the same on both plots. The spectra correspond to the upper fluid layer and are com-

puted in the white rectangle shown in Figure 1; the time-averaging interval is the last 10 years.

All subgrid parameterizations are given separately from the biharmonic Smagorinsky model;

for example, ”JH15(∇2)” shows only a contribution from the negative Laplacian viscosity. The

”Smag(∇4)” is the biharmonic Smagorinsky model with CS = 0.06; in panel (b) it corresponds to

run with S = 0. The prediction given by GZ21 on panel (a) is multiplied by 10 for convenience.

4.2 Subgrid kinetic energy transfer

In this section, we explain the reproducing of the EKE spectrum by different coarse
parameterized ocean models via analysis of the subgrid energy transfer. The energy trans-
fer is computed both offline and online because the accuracy of the parameterization can
change once it is included in the coarse-grid model (Meneveau & Katz, 2000; Ross et al.,
2023). Note that offline analysis evaluates the subgrid parameterization on the filtered
and coarse-grained snapshots of the high-resolution model while online analysis evalu-
ates the parameterization once the parameterized ocean model is integrated in time.

The KE transfer spectrum of the subgrid forcing or parameterization S = (Sx, Sy)
is given by:

T (κx, κy) = Re [F(u)∗F(Sx) + F(v)∗F(Sy)] , (11)

where κx and κy are zonal and meridional wavenumbers, respectively, F is the 2D Fourier
transform, ∗ is the complex conjugate, and Re is the real part. We integrate the two-
dimensional transfer spectrum over circles (κ2

x+κ2
y = κ2) to obtain the isotropic trans-

fer spectrum T (κ). We compute the subgrid forcing according to Eq. (4), where the fil-
tering operator (·) is defined as a combination of the Gaussian filter implemented in the
package GCM-filters (Grooms et al., 2021; Loose et al., 2022) followed by coarse-graining.
The width of the Gaussian filter is chosen to be proportional to the grid spacing of the
coarse resolution model, by introducing a filter-to-grid width ratio (FGR, Ghosal, 1996;
Lund, 1997; Chow & Moin, 2003; Perezhogin & Glazunov, 2023). Here, we use FGR =
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2.5, found to optimally reproduce the subgrid KE transfer by the ZB20-based param-
eterizations in offline analysis.

The subgrid energy transfer contains an interval with small-scale energy and en-
strophy dissipation (T (κ) < 0) and an interval of large-scale energy backscatter (T (κ) >
0), see black line in Figure 3. The unfiltered ZB20 parameterization simulates the pos-
itive and negative energy transfer relatively well in the offline analysis; see blue line in
Figure 3(a). However, in online analysis, the energy transfer is reversed: the ZB20 dis-
sipates energy on large scales and generates energy near the grid scale (Figure 3(b)). This
explains the emergence of the grid-scale numerical noise and deterioration of the large
scales in the EKE spectrum of the ZB20 model (Figure 2). The filtering techniques (ZB20-
Smooth and ZB20-Reynolds) avoid the generation of the numerical noise near the grid
scale and preserve the original properties of the ZB20 such that the backscattering re-
gion for these filtered parameterizations is located in the large scales (Figure 3(b)). The
ZB20-Reynolds parameterization appears more efficient than ZB20-Smooth in reproduc-
ing the KE backscatter.

The JH15 parameterization is evaluated only in online simulations; the equation
for subgrid KE, evolving in time, complicates the offline analysis of JH15. The backscat-
tering part of JH15 (negative Laplacian viscosity) introduces the positive energy trans-
fer on higher wavenumbers (smaller scales) compared to the filtered ZB20 parameter-
izations and diagnosed subgrid forcing (Figure 3(b)). The JH15 parameterization is ex-
pected to be more accurate when compared to the subgrid forcing diagnosed with more
scale-selective filters (Kraichnan, 1976; Perezhogin & Glazunov, 2023). The offline pre-
diction of the GZ21 parameterization is multiplied by 10 for convenience. This factor pre-
sumably corrects for the discrepancy in the filter width: the GZ21 was trained with the
narrower filter width (FGR =

√
12/2 ≈ 1.73 < 2.5). After applying the correction,

the GZ21 parameterization accurately predicts the offline transfer spectrum of the sub-
grid forcing (Figure 3(a)). However, similarly to the unfiltered ZB20 parameterization,
it significantly changes the prediction once evaluated online. The online KE transfer spec-
trum for the GZ21 is purely positive and lacks the dissipative region; its shape resem-
bles the negative Laplacian viscosity model, see Figure 3(b). The impact of the JH15
and GZ21 parameterizations on the middle scales of the EKE spectrum (Figure 2) can
be explained by the more scale-selective backscatter, which may be seen as an advan-
tage; however, it can also lead to numerical instabilities (Grooms et al., 2015; Bachman,
2019; Juricke et al., 2019; Grooms, 2023; Bagaeva et al., 2023).

Note that the small-scale dissipation in online runs is provided by the biharmonic
Smagorinsky model and is not captured by ML-based subgrid parameterizations (ZB20,
GZ21) contrary to their offline results.

4.3 Kinetic and potential energy

We compute the kinetic energy (KE) and available potential energy (APE) (Ap-
pendix B). We split the KE into the kinetic energy of the mean flow averaged over the
last 10 years of the simulations (mean kinetic energy, MKE) and residual – the eddy part
(eddy kinetic energy, EKE), and similarly for APE with mean potential energy (MPE)
and eddy potential energy (EPE).

We compare the coarse models to the high-resolution model and its coarse-grained
version (Figure 4). The MKE and APE of the unparameterized model (1/4o) are too large.
However, the total kinetic energy (EKE+MKE) is only slightly underestimated and thus,
the need for the backscatter parameterization in the Double Gyre configuration is rel-
atively moderate. The ZB20 parameterization improves (reduces) the APE, as expected
from the mesoscale parameterization (Figure 4(b)). However, due to the generation of
numerical noise, the large-scale eddies are disrupted, and the KE is too low (Figure 4(a)).
Note that compared to the physical buoyancy parameterizations (Gent & McWilliams,
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Figure 4. Experiments at resolution 1/4o: (a) Kinetic energy (KE) of the mean flow (MKE)

and eddies (EKE), (b) Available potential energy (APE) of the mean flow (MPE) and eddies

(EPE). In both plots, energy is summed over the fluid layers or interfaces and averaged over the

last 10 years. The horizontal dotted lines represent the ground truth value of the total kinetic (a)

and total potential (b) energy.

1990), reduction of APE appears indirectly through the change of the mean flow. Di-
rectly reducing the APE would require an additional parameterization in the thickness
equation (Loose et al., 2023), which we omit here. The ZB20-Smooth parameterization
improves (reduces) the APE but with little change to the KE; it also reduces the MKE
in agreement with the high-resolution model (Figure 4(a)). The backscatter parameter-
izations (ZB20-Reynolds, JH15 and GZ21) efficiently energize the flow: they increase the
kinetic energy and reduce the MKE. However, they have little impact on the APE.

4.4 Mean flow

Figure 5 shows the time-mean sea surface height (SSH). The unparameterized model
(1/4o) has a strong persistent recirculation near the boundary marked by the green rect-
angle, contrary to the prediction of the high-resolution model. In parameterized mod-
els (ZB20, ZB20-Smooth, ZB20-Reynolds, JH15, GZ21), we observe an improvement in
the representation of the mean flow. The persistent recirculation is less evident, and the
region exhibits a meandering jet pattern similar to that observed in the high-resolution
model. The ZB20-Smooth model is the most accurate in representing the mean flow, and
its RMSE (root mean squared error) is significantly lower than for other parameterized
models (see Figure 5 for RMSE SSH values used to describe the mean bias in SSH). Note
that the ZB20-Smooth parameterization improved the mean flow without increasing the
KE (i.e., without strong backscatter). On the contrary, the most efficient backscatter pa-
rameterizations (ZB20-Reynolds, JH15, GZ21) have higher RMSE for SSH. By increas-
ing the scaling coefficient γ, we can further improve the RMSE for the ZB20-Reynolds
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Figure 5. Sea surface height (SSH) averaged over the last 10 years for experiments at 1/4o

resolution. For every coarse model, we provide the root mean squared error (RMSE) in the time-

mean SSH with respect to the coarse-grained high-resolution model shown in panel (a).

model (Appendix C). However, the value is constrained by numerical stability, here we
find the optimal coefficient γ = 2.8 to be on the boundary of the stability region.

4.5 Eddy-mean flow interaction

The two previous sections show that the parameterizations that are best in repro-
ducing the KE backscatter do not demonstrate optimal performance in reproducing prop-
erties of the mean flow and potential energy. According to Moser et al. (2021), the time-
mean subgrid stress is another property of the subgrid eddies that affects the mean flow
prediction. In geophysical fluid flows, a similar effect is known as an eddy-mean flow in-
teraction and has been analyzed in a number of studies (Andrews & Mcintyre, 1976; Hoskins
et al., 1983; R. J. Greatbatch, 1998; Wardle & Marshall, 2000; Hughes & Ash, 2001; Ka-
menkovich et al., 2009; Qiu & Chen, 2010; R. J. Greatbatch et al., 2010; R. Greatbatch
et al., 2010; Waterman & Jayne, 2011). Following Hughes and Ash (2001), we show the
10-year averaged zonal acceleration produced by the subgrid eddies in the upper layer
(Figure 6). The subgrid forcing amplifies the resolved jet by accelerating the jet current
extension eastward (longitude > 5o) and decelerating the jet in the separation region
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Figure 6. Analysis of the eddy-mean flow interaction following Hughes and Ash (2001): the

10-year mean zonal acceleration in the upper layer produced by the subgrid eddies (S
t
x). (a)

Zonal component of the subgrid forcing (Eq. (4)) diagnosed from the 1/64o model by filter-

ing and coarse-graining; the joint contribution of the subgrid parameterization and biharmonic

Smagorinsky model in online simulations is shown in the other panels.

(longitude < 5o), see Figure 6(a). A similar pattern was shown in Zanna and Bolton
(2020); see their Figures S2 and S4. The time-mean contribution of the eddy-viscosity
models (biharmonic Smagorinsky and JH15) is too small compared to the diagnosed sub-
grid forcing (Figure 6(b,c)), as expected from Moser et al. (2021). The GZ21 parame-
terization produces westward accelerations in most of the domain and thus disagrees with
the diagnosed subgrid forcing (Figure 6(d)). The ZB20-Smooth and ZB20-Reynolds pa-
rameterizations reproduce the acceleration pattern of the subgrid forcing most accurately,
with the ZB20-Smooth having the largest accelerations (Figure 6(f,g)). The zonal ac-
celeration produced by the unfiltered ZB20 parameterization is smaller and less accu-
rate compared to the filtered models (Figure 6(e)). The success of the ZB20-based pa-
rameterizations in improving the mean flow and the APE appears to be related to their
effect on the time-mean zonal acceleration (Anstey & Zanna, 2017).
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Figure 7. Sensitivity to the scaling coefficient γ (shown in legend). Upper row: the time-

mean kinetic energy (KE), middle row: the time-mean available potential energy (APE), lower

row: root mean squared error (RMSE) in the time-mean sea surface height (SSH). Left column

shows unfiltered ZB20 parameterization and two rightmost columns show filtered ZB20 models.

The black line shows the unparameterized model (biharmonic Smagorinsky). The gray horizontal

line shows the 1/64o model. The shading shows confidence intervals (see text).

5 Sensitivity study and scale awareness

The parameterization effect of mesoscale eddies, which are partially resolved, should
be reduced as the grid is refined (Haidvogel et al., 2017). This can be achieved by in-
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forming the parameterization with the local grid spacing, often referred to as scale-aware
parameterizations in the literature (Bachman et al., 2017; Pearson et al., 2017). Note
that the free parameter of the ZB20 parameterization, which we use here (Eq. (7)), is
scale-aware and controlled by a single non-dimensional coefficient. To quantify the scale
awareness, we test the parameterizations in a hierarchy of seven simulations differing in
grid resolution.

5.1 Sensitivity to the scaling coefficient

We run experiments with the ZB20-based parameterizations for a range of reso-
lutions from 1/2o to 1/8o and consider the sensitivity to the scaling coefficient γ. The
effect of the subgrid parameterizations is quantified through the following metrics: the
time-mean KE and APE, and the RMSE in the time-mean SSH. We compute the RMSE
with respect to the 10-year averaged output of the high-resolution model 1/64o coarse-
grained to the coarse grid. We split the last 15 years of the simulation of the coarse mod-
els into three 5-year segments. For every metric, we compute the mean over the segments
with confidence intervals provided by the min/max values over the segments.

The impact of the ZB20-based parameterizations on all metrics is consistent with
that described in Section 4 for most of the resolutions (Figure 7). In particular, the ZB20
and ZB20-Smooth parameterizations spuriously reduce the KE (Figure 7(a,b)) but im-
prove the APE (Figure 7(d,e)); additionally, the spurious effect on the KE is smaller for
the ZB20-Smooth parameterization. The ZB20-Reynolds model is an efficient backscat-
ter parameterization: it increases the KE (Figure 7(c)) with little impact on the APE
(Figure 7(f)). All three subgrid parameterizations reduce the bias in SSH with the ZB20-
Smooth having the lowest error, the ZB20 having the highest error and ZB20-Reynolds
having the intermediate error (Figure 7, lower row).

The impact on the kinetic and potential energy for all three subgrid parameteri-
zations is proportional to the scaling coefficient (Figure 7, upper and middle rows). Also,
the default scaling coefficients used in the previous section (ZB20-Smooth: γ = 1, ZB20-
Reynolds: γ = 2) correspond to a compromise in reproducing the presented metrics for
a range of resolutions. These non-dimensional coefficients can be kept constant without
retuning, making the developed filtered ZB20 parameterizations scale-aware. An over-
shoot in some metrics at resolution 1/2o (Figure 7(e)) happens because the mesoscale
eddies fall below the grid scale of the coarse model, and thus the main assumption of the
LES model, the grid scale corresponds to the inertial range, is violated. In Appendix C
we discuss the sensitivity to the filter parameter (N) and to the Smagorinsky coefficient
(CS).

5.2 Comparison to the baseline parameterizations

We compare the proposed subgrid parameterizations (ZB20-Smooth and ZB20-Reynolds)
with the default parameter γ to the baseline subgrid parameterizations of JH15 and GZ21.
The subgrid parameterizations ZB20-Reynolds, GZ21 and JH15 are equally efficient in
energizing the resolved flow, i.e. they parameterize the KE backscatter (Figure 8(a)) but
have similar drawbacks. At the lowest resolutions (1/2o−1/3o), the ZB20-Reynolds and
JH15 parameterizations underestimate the KE. At the highest resolutions (1/5o−1/8o),
the ZB20-Reynolds and JH15 parameterizations slightly overestimate the KE without
retuning; note that the GZ21 was tuned at every resolution to reproduce the KE exactly
(Zhang et al., 2023). These three backscattering parameterizations have only a slight im-
pact on the APE (Figure 8(b)). The ZB20-Smooth parameterization demonstrates the
best representation of the APE for a range of resolutions 1/3o−1/8o (Figure 8(b)) and
the best representation of the mean flow for a range of resolutions 1/4o−1/8o (Figure
8(c)).
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Figure 8. Similar to Figure 7, but comparison of the ZB20 parameterizations to the base-

lines of Jansen et al. (2015) and Guillaumin and Zanna (2021). The scaling coefficient γ is set to

default: 1.0 for ZB20-Smooth and 2.0 for ZB20-Reynolds.

6 Experiments in NeverWorld2 configuration

In this section, we analyze the impact of the different subgrid parameterizations
in a considerably more complicated configuration of the MOM6 ocean model – the Nev-
erWorld2 (NW2, Marques et al., 2022). This configuration mimics the global ocean and
spans the latitudes from 60oS to 60oN , including the equator with topography mimick-
ing an idealized Mid-Atlantic ridge and a Drake Passage. The number of fluid layers is
15. Compared to the Double Gyre configuration, the NW2 has a stronger need for im-
proving the energetics: the KE significantly depends on the resolution and increases by
a factor of 4 when resolution is increased from 1/4o to 1/32o (Marques et al., 2022).

6.1 Numerical issues and tuning

Preliminary experiments with the proposed ZB20 parameterizations demonstrated
numerical instabilities accompanied by various runtime errors: ocean velocities are too
large, interface height drops below the bathymetry, and NaN values in the prognostic
fields. These issues are partly tied to the structure of isopycnals in NW2; for example,
the significant part of the model area (40%) is characterized by isopycnal layers with small
thicknesses (hk ≈ 10−2m). To address this numerical instability, we applied two strate-
gies:

• Switching the discretization of the ZB20 parameterization from the energy-conserving
(Eq. (A10)) used in the Double Gyre to a non-conserving one (Eq. (A12)). The
non-conservative numerical scheme presumably introduces fewer aliasing errors
because the multiplication operation follows the interpolation but not vice versa.

• Attenuating the parameterization in regions of geostrophically unbalanced flows.
Similarly to Klöwer et al. (2018); Juricke et al. (2019), we introduce the follow-
ing attenuation function: 1 +

√
D2 + D̃2 + ζ2

|f |

−1

. (12)

The ZB20 stress tensor is multiplied by the attenuation function right before com-
puting its divergence. The inclusion of ζ2 into Eq. (12) is a proposed modifica-
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tion, which was found to improve the numerical stability. The expression D2+
D̃2+ ζ2 is proportional to the hydrostatic stress of the ZB20 parameterization,
and thus the attenuation allows to bound the predicted momentum flux.
Note that the attenuation was inspired by a similar technique of shutting off the
backscatter in high-strain regions proposed by Yankovsky et al. (2023). The dif-
ference between the two approaches is little: we attenuate the parameterization
smoothly while they shut off the backscatter abruptly; we use the inverse Cori-
olis parameter as a time scale while they use the time step (that is, the stability
criteria).

We further note that the Smagorinsky coefficient in the coarse model was changed
from the value CS = 0.2 used in the original work (Marques et al., 2022) to our default
value CS = 0.06. In preliminary experiments with NW2 at resolution 1/4o, we noted
that the ZB20 parameterization (without filters) could not be tuned to reproduce the
KE of the filtered high-resolution model. The increase in the KE is only ≈ 25% for γ =
0.3 (not shown). The ZB20-Smooth and ZB20-Reynolds parameterizations were tuned
to reproduce the KE of the filtered high-resolution model and the corresponding scal-
ing coefficient for both of them is γ = 2.5.

To sum up, compared to the Double Gyre case, we changed the discretization scheme,
introduced the attenuation function, and increased the scaling coefficient. We postpone
the development of the parameterization which works in various configurations with a
single set of parameters for future studies.

6.2 Results

We run the coarse parameterized and unparameterized models at resolution 1/4o

for 30000 days from rest. The high-resolution simulation 1/32o was spun up in multi-
ple stages in Marques et al. (2022). We use snapshots from the last 100 days and time-
mean fields over the last 1000 days.

In Figure 9, we compare the coarse models to the high-resolution simulation (black
line) and its filtered versions (light blue and pink lines). The filter widths for filtering
the 1/32o model are chosen as 1o and 1/2o. That is, we assume that the effective res-
olution of the coarse models is lower than the nominal resolution given by the coarse grid
(Skamarock, 2004; Soufflet et al., 2016). Note that compared to the Double Gyre case,
the topography is non-convex, which results in the drop of the interfaces below the to-
pography when the filter is applied near the bottom. We expect that the APE of the fil-
tered 1/32o model should be lower than the APE of the unfiltered solution. However,
the APE of the filtered solution was found to be sensitive to the algorithm processing
such events.

The unparameterized model (1/4o) has a KE that is approximately 4 times lower
than the KE of the 1/32o model and 3 times lower than the KE of the filtered 1/32o model
(Figure 9(a)). The APE of the unparameterized model is too high compared to the high-
resolution simulation (Figure 9(b)). The ZB20-Smooth and ZB20-Reynolds parameter-
izations increase the KE approximately 3 times and reduce the APE below the APE of
the high-resolution simulation (as we expect for the filtered solution). The ZB20-Smooth
parameterization is slightly more efficient in reducing the APE and the ZB20-Reynolds
is slightly more efficient in increasing the KE (Figure 9(a,b)). The analysis of the EKE
spectrum at the surface reveals an increase of the energy density on large scales (wavenum-
bers κ < 5·10−2km−1) in parameterized models compared to the unparameterized model
(Figure 9(c)). The energy density on smaller scales remains mostly unchanged.

According to the analysis of the EKE spectrum shape in the small scales, all the
coarse models are closest to the 1/32o model filtered with the filter width 1/2o (Figure
9(c)). However, the KE of the parameterized models matches better the 1/32o model
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Figure 11. The time-mean interfaces in the Drake Passage (60oS-40oS, 0oE) averaged over

1000 days. The blue dashed lines show the experiments at resolution 1/4o: (a) unparameterized

model, (b) and (c) ZB20 parameterizations. Black lines show the interfaces of the high-resolution

model 1/32o. The layer numbers (equal to 14, 12,...) are provided.

filtered with filter width 1o (Figure 9(a)). A further increase in KE is possible but the
APE will decrease even further and presumably will become unphysical. These findings
reveal the difficulties in determining the effective resolution of the parameterized sim-
ulations.

The snapshots of the depth-integrated KE are shown in Figure 10. Both param-
eterized models (ZB20-Smooth and ZB20-Reynolds) considerably energize the eddies in
all parts of the domain compared to the unparameterized model and in accordance with
the high-resolution simulation. The major difference with the high-resolution simulation
is the presence of strong coherent eddies near the western boundary in parameterized
models (Figure 10(b,c)). Presumably, the attenuation function (Eq. (12)) was needed
to bound the growth of these and similar eddies. However, we mention that it is diffi-
cult to track how a particular eddy contributes to the development of numerical insta-
bilities.

The largest contribution to the APE is from the isopycnal slopes in the Drake Pas-
sage (60oS−40oS). In Figure 11, we show the layer interfaces between isopycnal layers
in this region. The mesoscale eddies extract the potential energy from the mean flow and
act to flatten the isopycnals. The coarse unparameterized model resolves the mesoscale
eddies poorly, and consequently, its isopycnals are too steep (Figure 11(a)). Both param-
eterizations (ZB20-Smooth and ZB20-Reynolds) result in reducing the potential energy
and better reproducing of the isopycnals in the Drake Passage (Figure 11(b,c)). The ZB20-
Reynolds parameterization is slightly more accurate in the upper layers, while the ZB20-
Smooth is slightly more accurate near the northern boundary of the Drake Passage.

7 Conclusions and discussion

In this work, we implemented the data-driven mesoscale eddy parameterization by
Zanna and Bolton (2020) (ZB20) into the GFDL ocean model, MOM6, and tested it in
two idealized configurations: the Double Gyre and NeverWorld2 (NW2). The ZB20 cap-
tures the KE backscatter and supplements the upscale energy cascade. Our main find-
ings are as follows:
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• The proposed filtering schemes reduce the generation of numerical noise by ZB20
parameterization and enhance the large-scale backscatter.

• The filtered ZB20 parameterizations improve the representation of the energy dis-
tributions and the climatological mean flow compared to the current state-of-the-
art energy backscatter parameterizations (Jansen et al., 2015; Guillaumin & Zanna,
2021).

• The filtered ZB20 parameterizations are scale-aware. A single non-dimensional pa-
rameter γ ≈ 1 can be used for a range of resolutions without retuning.

• The leading order effect of mesoscale eddies depends on the ocean configuration:
in the NW2 configuration they significantly energize the flow while in Double Gyre
they impose a strong mean subgrid stress.

• The proposed parameterization ZB20-Smooth is able to account for this leading
order effect in both ocean configurations and thus demonstrates the most univer-
sal properties in presented experiments.

Our methodology paves the way for researchers and ocean modelers to implement
and test subgrid ML parameterizations in state-of-the-art ocean models. As with all pa-
rameterizations in current climate models, the ZB20 parameterization required tuning.
The succinct interpretable form of the subgrid model allowed us to study its physical and
numerical properties in detail. We leveraged the filtering schemes to extract the param-
eterization effect on the large-scale flow and to avoid the grid-scale numerical issues. The
filtering schemes remain a popular tool in the development of physics-based subgrid mod-
els (Juricke et al., 2020; Mak et al., 2023; Grooms, 2023; Bagaeva et al., 2023) and here
we demonstrated their utility for ML-based parameterizations. We further learned that
testing various discretizations of the subgrid model offers an opportunity to find a nu-
merically stable scheme which is necessary to run online simulations.

While applying the filtering schemes allows us to improve the physical and numer-
ical properties of the ZB20 parameterization, a number of challenges remain. (1) It is
difficult to find a single filtering scheme that improves the mean flow and kinetic/potential
energies simultaneously. (2) The proposed filtering approach is applied and tuned a pos-
teriori; how to learn it directly from data is an open question. (3) The filtered ZB20 pa-
rameterizations do not affect the grid scales, so a supplementary subgrid model that is
effective for short waves is needed. In this work, the biharmonic Smagorinsky model plays
this role. (4) Without filters, the ZB20 parameterization is computationally cheap (1−
3% of total runtime). However, the filters can increase the computational cost to 5 −
10% of total runtime.

Possible future improvements to the proposed parameterization include: (1) Includ-
ing spatial non-locality (P. Wang et al., 2022) during the training process to potentially
reduce the need for a posteriori tuning. (2) Using a neural network to improve the pre-
diction of the subgrid stress having the same input features. (3) Informing a subgrid model
with local physical parameters to improve generalization to unseen flow regimes, in the
spirit of scale-aware parameterizations (Hallberg, 2013; Bachman et al., 2017; Jansen et
al., 2019). (4) Imposing physical laws as hard constraints to enhance generalization, as
in physics-aware parameterizations (Guan, Subel, et al., 2022; Pawar et al., 2023). For
example, in this work we found that constraining the subgrid model to predict the sub-
grid stress through an interpretable expression streamlines the generalization to ocean
configurations with complex coordinates and topography.

An additional interesting future direction is to apply the developed subgrid param-
eterizations in eddy-permitting global ocean models to improve the representation of the
ocean currents, addressing long-standing biases such as the North Atlantic cold bias (C. Wang
et al., 2014; Flato et al., 2014).
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Appendix A Curvilinear coordinates, varying layer thickness, numer-
ical schemes and boundary conditions

We modify the original parameterization (Eqs. (5), (6)) to account for curvilinear
coordinates and varying layer thickness. Also, we propose a numerical discretization scheme
and boundary conditions.

A1 Computation of the stress tensor

The components of the stress tensor T depend uniquely on the gradients of the ve-
locity field (D, D̃, ζ). The computation of these gradients depends on the coordinate sys-
tem. In generalized curvilinear orthogonal coordinates the expressions for D and D̃ must
be changed to (Appendix A.b in S. M. Griffies and Hallberg (2000) and Section 17.10.2
in S. Griffies (2018)):

D = ∆y∂x(v/∆y) + ∆x∂y(u/∆x), (A1)

D̃ = ∆y∂x(u/∆y)−∆x∂y(v/∆x), (A2)

where ∆x and ∆y are local grid spacings that are proportional to the Lame coefficients.

Following a similar approach, we compute the relative vorticity as follows:

ζ = ∆y∂x(v/∆y)−∆x∂y(u/∆x). (A3)

Note that the relative vorticity can be alternatively computed using the contour inte-
gral divided by area, that is ζ = ∆−1

y ∂x(∆yv)−∆−1
x ∂y(∆xu), see Section 2.3.2 in Madec

and the NEMO team (2008). We found that both approaches give close results and use
Eq. (A3) for simplicity.

A2 Divergence of momentum flux

Following previous work on viscous operators in ocean models (Eqs. (A3) and (A4)
in S. M. Griffies and Hallberg (2000) and Section 17.10.3 in S. Griffies (2018)), we mod-
ify the divergence of the stress tensor (Eq. (5)):

S =
1

h
∇ · (hT) =

1

h

(
1
∆2

y
∂x(∆

2
yhTxx) +

1
∆2

x
∂y(∆

2
xhTxy)

1
∆2

y
∂x(∆

2
yhTxy) +

1
∆2

x
∂y(∆

2
xhTyy)

)
. (A4)

where we account for curvilinear coordinates with terms including ∆x and ∆y and for
varying layer thickness with terms including h. The components of the subgrid forcing
parameterization S have the dimensions of acceleration, i.e. length1 time−2. The com-
ponents of the stress tensor (Txx, Txy, ...) have the dimensions of length2 time−2.

Accounting for varying thickness allows to build a parameterization that conserves
the integral of momentum up to the boundary fluxes:

∂t

∫
hudxdy = · · ·+

∫
h∂tudxdy = · · ·+

∫
hSdxdy = · · ·+ (A5)

��������:0∫
∇ · (hT)dxdy. (A6)

A3 Numerical discretization

The rate of change of the KE due to parameterization (Eq. (A4)) up to the bound-
ary fluxes is given by:

∂t

∫
1

2
h|u|2dxdy = · · ·+

∫
(hu)Sdxdy = · · ·+

∫
u · ∇ · (hT)dxdy = · · · (A7)

−
∫

hT : (∇u)dxdy, (A8)
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where ∇u is the velocity gradient (VG) tensor and (:) is the tensor contraction over two
indices (Eyink, 1995). In Cartesian coordinates the components of VG tensor have a sim-
ple form (∇u)ij = ∂jui. The energy contribution from the deviatoric component of T
(Eq. (6)) is zero because it is orthogonal to the VG tensor:

2Td : (∇u) =

[
−ζD ζD̃

ζD̃ ζD

]
:

[
D̃ D

D −D̃

]
︸ ︷︷ ︸
deviatoric
symmetric
part of 2∇u

= −ζDD̃ + ζD̃D + ζD̃D − ζDD̃ = 0. (A9)

However, the Eq. (A9) does not hold numerically when the Arakawa C grid stag-
gering is used. Because D, ζ and Txy are defined in the corner of the grid cell, but Txx,

Tyy and D̃ are defined in the center of the grid cell. We propose the following energy-
conserving discretization of the deviatoric stress:[

−ζD
x,y

ζD̃
x,y

ζD̃
x,y

ζD
x,y

]
︸ ︷︷ ︸

numerical scheme

:

[
D̃ D

D −D̃

]
= − 2ζD

x,y
D̃︸ ︷︷ ︸

cell center

+2ζDD̃
x,y︸ ︷︷ ︸

cell corner

, (A10)

where (·)
x,y

is a linear interpolation from corner to center or vice versa. Terms in the
RHS of Eq. (A10) are defined in different points but cancel after summation over the
domain because the interpolation operator is self-adjoint up to the boundary conditions
(Section 4.1.2 in Madec and the NEMO team (2008)). Energy-conserving discretization
on a non-uniform grid is given by computing the interpolation ζD

x,y
in a conservative

way, i.e. by weighting with the local grid cell area. Note that exact energy conservation
property is lost when coefficient κBC or layer thickness h vary spatially or when the spa-
tial filters are applied.

For the hydrostatic part of T (Eq. (6)), we use the simplest numerical scheme be-
cause no properties are known:(

(ζ
x,y

)2 + (D
x,y

)2 + D̃2
)[1 0

0 1

]
. (A11)

The energy-conserving discretization (Eq. (A10)) is used in the Double Gyre con-
figuration. In NW2 runs, we found that the following approximation of the deviatoric
component of T demonstrates better numerical stability properties:[

−ζ
x,y

D
x,y

ζD̃
x,y

ζD̃
x,y

ζ
x,y

D
x,y

]
. (A12)

A4 Boundary conditions

We apply an analog of the free-slip boundary condition: the momentum flux through
the boundary is zero. On the Arakawa C grid, it is achieved by setting Txy = 0 on the
boundary. Zero boundary conditions are also used for the filtering operations and inter-
polations on the staggered grid.

Appendix B Computation of kinetic and potential energy

The KE integrated over the fluid layers and horizontal coordinates in Joules is de-
fined as:

KE =
1

2

∑
k

∫
ρ0|uk|2hkdxdy. (B1)
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The KE of the mean flow (ut
k, h

t

k) is referred to as a mean kinetic energy (MKE). The

eddy kinetic energy (EKE) is defined as EKE = KE
t − MKE. The potential energy

(PE) summed over interfaces in Joules is defined as:

PE =
1

2

∑
k

∫
ρ0g

′
k+1/2η

2
k+1/2dxdy. (B2)

The available potential energy (APE) is the PE minus the potential energy of the rest-
ing state given by ηrefk+1/2 = max(z0k+1/2,−H(x, y)), where z0k+1/2 is the constant nom-
inal position of the interfaces and H ≥ 0 is the depth (Marques et al., 2022). Mean po-
tential energy (MPE) is the APE of the mean flow ηtk+1/2, and eddy potential energy

(EPE) is given by EPE = APE
t −MPE.

Appendix C Additional sensitivity studies

In Figure C1 we show the sensitivity of the online metrics to the number of filter
passes (N) for the ZB20-Smooth and ZB20-Reynolds parameterizations. For the ZB20-
Smooth, the effect of reducing APE is slightly stronger for lower N at the same scaling
coefficient γ (Figure C1(b)). However, the undesirable impact on the KE is also stronger
(Figure C1(a)). Considering the error in SSH, the optimal number of filters is N = 2
for coarse resolutions (1/2o− 1/3o) and the optimal number is N = 4 for higher reso-
lutions (Figure C1(c)). For the ZB20-Reynolds parameterization, the impact on the KE
is higher for higher N (Figure C1(d)). An impact on the SSH metric is also more sig-
nificant for larger N (Figure C1(f)). Overall, a slightly more beneficial impact on ener-
getic metrics (KE, APE) is observed in the case of a larger number of filters N = 4.
However, testing in different configurations is required to determine the optimal param-
eter N .

In Figure C2, we show the sensitivity to the Smagorinsky coefficient. We consider
the bias in SSH prediction because it is sensitive to the inclusion of any of the param-
eterizations (ZB20, ZB20-Smooth, ZB20-Reynolds). The unparameterized models with
different Smagorinsky coefficients are shown in black markers. White markers show the
optimal scaling coefficient γ for a given Smagorinsky constant. Note that we include in-
viscid simulations (CS = 0.00). The inviscid models can run in a numerically stable way
for all three parameterizations for a range of scaling coefficients γ. However, the opti-
mal SSH metric is achieved when ZB20-based parameterizations are turned off, i.e. γ =
0 when CS = 0. This demonstrates that the ZB20-based parameterizations describe
only part of the subgrid forcing and they cannot be used without the eddy viscosity. An-
other important observation – the optimal scaling coefficient γ should be increased when
the eddy viscosity coefficient CS is increased. Finally, the bias in SSH can be reduced
approximately twice for the ZB20-Smooth and ZB20-Reynolds parameterizations for all
non-zero values of the Smagorinsky coefficient (CS = 0.03, 0.06, 0.09).

Open Research

The NW2 configuration is available via Bhamidipati et al. (2022), for reference sim-
ulations in NW2 see Marques, Gustavo (2022). The MOM6 source code (version used
to conduct the research) with implemented ZB20 parameterization, configuration files
for Double Gyre and NW2, and figure plotting functions is available via Perezhogin (2023b).
The selected simulation data is available via Perezhogin (2023a).
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Every small box shows a single simulation. The hatch area shows unstable simulations.
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