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Large eddy simulation of ocean mesoscale eddies

By P. Perezhogin†, A. Balakrishna AND R. Agrawal

Mesoscale eddies produce lateral (2D) fluxes that need to be parameterized in eddy-
permitting (1/4◦) global ocean models due to insufficient spatial resolution. Here, we sys-
tematically apply methods from the 3D LES community to parameterize vorticity fluxes
produced by mesoscale eddies leveraging an explicit filtering approach together with a dy-
namic procedure. The developed subfilter closure is implemented into the GFDL MOM6
ocean model and is evaluated in an idealized configuration, Double Gyre, both a-priori
and a-posteriori. For sufficiently resolved grids, the LES simulations converge to the fil-
tered high-resolution data. However, limitations in the proposed closure are observed
when the filter scale approaches the energy-containing scales: the a-priori performance
drops and a-posteriori experiments fail to converge to the filtered high-resolution data.
Nevertheless, the proposed closure is accurate in predicting the mean flow in a-posteriori
simulations at all resolutions considered (1/2◦ − 1/8◦). Finally, we propose parameter-
izing the thickness fluxes using a Bardina model which further improves simulations at
the coarsest resolutions (1/2◦ − 1/3◦).

1. Introduction

Traditional parameterizations of mesoscale eddies attempt to close the energy budget
by parameterizing dissipation and backscatter of kinetic energy (Jansen & Held 2014)
and removal of the potential energy (Gent & McWilliams 1990). However, these parame-
terizations are commonly tuned to maximize a-posteriori performance, and consequently,
their a-priori accuracy and connection to high-resolution data are unknown. In recent
years there has been a substantial effort to develop mesoscale parameterizations with high
a-priori accuracy by applying the large eddy simulation (LES) paradigm (Fox-Kemper
& Menemenlis 2008; Khani & Dawson 2023) or machine learning methods (Zanna &
Bolton 2020). However, as compared to studies of 3D turbulence, the assessment of these
methods has been limited thus far. For instance, the dynamic model of Germano et al.
(1991) has been evaluated in ocean models only once (Bachman et al. 2017).

Vorticity fluxes (or momentum fluxes) in quasi-2D fluids are responsible for the forward
cascade of enstrophy and inverse cascade of energy. Thus, careful consideration of both
dissipation and backscatter is required to produce accurate and numerically stable sub-
filter closures. Perezhogin & Glazunov (2023) showed that the 3D LES closure of Horiuti
(1997) can be adapted for the prediction of vorticity fluxes in 2D decaying turbulence. In
particular, the Reynolds stress, which is a part of the Germano (1986) decomposition, is
responsible for additional kinetic energy backscatter. This finding was further confirmed
and exploited by Perezhogin et al. (2023) in an idealized GFDL MOM6 ocean model
(Adcroft et al. 2019). However, subfilter closures in that work were subject to substantial
a-posteriori tuning, and thus assessing their a-priori accuracy is challenging.
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In this light, we propose a methodology for parameterization of mesoscale eddies in the
MOM6 ocean model that addresses a problem of a-posteriori tuning without degrad-
ing a-priori accuracy. We utilize two approaches adopted by the three-dimensional LES
community, namely the explicit filtering approach (Winckelmans et al. 2001; Bose et al.
2010) and the dynamic procedure of Germano et al. (1991). Following the explicit filter-
ing approach, we assume that the LES filter width ∆ is larger than the LES grid spacing
∆x. This improves our predictions of the subfilter flux by allowing a partial inversion of
the LES filter (Carati et al. 2001). Additionally, we suppress the numerical discretization
errors by increasing the filter-to-grid width ratio (FGR = ∆/∆x). Finally, the “dynamic
procedure” allows us to accurately estimate the free parameters of the parameterization
from the resolved flow only. Overall, our approach permits a parameterization with good
a-priori accuracy and contains a single tunable parameter FGR, which is adjusted to
maximize the a-posteriori performance.

The rest of this report is organized as follows. Section 2 describes the MOM6 ocean
model, the subfilter closure of vorticity fluxes (Perezhogin & Glazunov 2023) and a newly
proposed closure of thickness fluxes. In Section 3 we show a-priori and a-posteriori results
and compare it to high-resolution filtered data. Finally, concluding remarks are made in
Section 4.

2. Methods

Here we attempt to improve the dynamical core of the MOM6 ocean model, which
solves the stacked shallow water equations, with improved LES subfilter closures.

2.1. Double Gyre configuration

The stacked (i.e., multilayer) shallow water equations in the vector-invariant form are
given as,

∂tu
k − (ωk + f)vk + ∂x(K

k +Mk) = Fk
x , (2.1)

∂tv
k + (ωk + f)uk + ∂y(K

k +Mk) = Fk
y , (2.2)

∂th
k + ∂x(u

khk) + ∂y(v
khk) = 0, (2.3)

where k is the index of the fluid layer, uk and vk are zonal and meridional velocities and
hk is the thickness of the fluid layer. Further, ωk = ∂xv

k − ∂yu
k is the relative vorticity,

Kk = 1/2((uk)2 + (vk)2) is the kinetic energy per unit mass and Mk is the Montgomery
potential (pressure anomaly). Also, f is the Coriolis parameter and Fk is an additional
forcing and dissipation. Note that there is no horizontal molecular viscosity in these
equations and thus the small-scale dissipation is provided by the subgrid parameterization
only.
We consider an idealized configuration Double Gyre of GFDL MOM6 ocean model

described in Perezhogin et al. (2023) and shown in Figure 1. Two fluid layers are governed
by the stacked shallow water equations (Eqs. (2.1)-(2.3)), with Fk given by a wind stress
applied at the surface and a drag force applied at the ocean floor. The model domain is
on a sphere with a spatial extent of (0◦−22◦E) × (30◦−50◦N) which is approximately
2000 km × 2000 km. We run experiments for 20 years of model time and use the last 10
years for computation of statistics to isolate from the transient development.
The high-resolution simulation at resolution 1/64◦ resolves the mesoscale eddies with

10 grid points as its grid spacing (1.5 km) is 10 times smaller than the first baroclinic
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Figure 1. Idealized configuration Double Gyre of GFDL MOM6 ocean model: (a) schematic,
(b) spatial spectrum of eddy kinetic energy (EKE) in a box (5◦−15◦E) × (35◦−45◦N) in upper
fluid layer, (c) snapshot of vorticity in high-resolution model.

Rossby radius (15− 30 km), the scale at which mesoscale eddies are generated (see blue
shading in Figure 1(b)). In contrast, ocean models with the coarsest resolutions con-
sidered (1/2◦ and 1/4◦) have an insufficient number of grid points per Rossby radius,
leading to insufficient eddy energy across all spatial scales (Figure 1(b)). In these base-
line experiments, we parameterize the subgrid momentum fluxes with the biharmonic
Smagorinsky model having a coefficient of CS = 0.06, which is a default value in the
global ocean model (Adcroft et al. 2019). Smaller values of CS are possible but will lead
to the appearance of numerical noise in the vorticity field. The mentioned lack of eddy
energy is caused by the too-strong dissipation provided by the biharmonic Smagorinsky
parameterization. The remainder of this report focuses on replacing this parameterization
with alternative subgrid models to enhance the coarse-resolution ocean models.

2.2. LES of stacked shallow water equations

Equations (2.1)-(2.3) can be spatially filtered (·) to arrive at,

∂tu− (ω + f) v + ∂x(K +M) = Fx + σy, (2.4)

∂tv + (ω + f)u+ ∂y(K +M) = Fy − σx, (2.5)

∂th+ ∂x(uh) + ∂y(vh) = −∂xλx − ∂yλy, (2.6)

where fluid layer index k has been omitted for brevity. Further,

σj = ujω − ujω and λj = ujh− ujh with j ∈ {1, 2} (2.7)

are the subfilter-scale (SFS) vorticity flux and subfilter thickness fluxes (i.e., mass fluxes),
respectively.
The main effort of this work is to parameterize vorticity fluxes. Note that in the mo-

mentum equations (Eqs. (2.4) and (2.5)), we neglect the contribution of the subfilter
kinetic energy because it does not affect flows with zero horizontal divergence (Marshall
& Adcroft 2010). Our approach can be enhanced by parameterizing subfilter momentum
fluxes rather than the vorticity fluxes. This adjustment would incorporate the local con-
servation law of momentum and naturally account for the horizontally divergent flows.
However, extracting the momentum fluxes would require applying thickness-weighted av-
eraging (Loose et al. 2023), also known as Favre averaging, which was previously adopted
for LES of compressible flows by Moin et al. (1991).



4 Perezhogin, Balakrishna & Agrawal

2.3. Vorticity closure

Here we consider the subfilter model of Perezhogin & Glazunov (2023)

ujω − ujω ≈ ujω − ujω + CS(∆x)4|S|∂∇
2ω

∂xj
+ CR

(
u′
j ω′ − u′

j ω′
)
, (2.8)

which consists of the Leonard flux, biharmonic Smagorinsky model, and the Reynolds-
stress model, respectively, where |S| =

√
(∂xu− ∂yv)2 + (∂yu+ ∂xv)2 is the modulus of

strain-rate tensor, ∇2 = ∂2
x + ∂2

y is the Laplace operator and ∆x is the grid spacing of

the coarse LES model. Note that for a quantity ϕ, we define ϕ′ = ϕ− ϕ and ϕ′ = ϕ− ϕ.

2.3.1. Dynamic estimation of CS and CR

The subfilter closure (Eq. (2.8)) has two free parameters, CS and CR, which can be es-
timated with the dynamic procedure (see Perezhogin & Glazunov 2023, in Appendix D).
Herein, we describe only a modification of this dynamic procedure using a scale-similarity
dynamic procedure (see Yuan et al. 2022, in Section 4.2). In our work, we found that the
Yuan et al. (2022) dynamic procedure has several advantages as compared to Germano
et al. (1991), specifically for the MOM6 ocean model: reduced computational cost, higher
a-priori accuracy and lower sensitivity to the boundary artifacts.

The dynamic procedure of Yuan et al. (2022) can be further simplified following Perezhogin

& Glazunov (2023) who assume that a test filter (̂·) equals to the base filter, (̂·) ≡ (·), and
thus the subfilter closure on the test-filter level is given in Eq. (2.8). Then, substituting
unfiltered fields (uj , ω) with filtered fields (uj , ω) in Eq. (2.8), we obtain an analog of
Germano et al. (1991) identity for our subfilter closure:

ujω − ujω ≈ ujω − ujω + CS(∆x)4|S|∂∇
2ω

∂xj
+ CR

(
u′
j ω′ − u′

j ω′
)
, (2.9)

where for any ϕ we define ϕ′ = ϕ − ϕ and ϕ′ = ϕ − ϕ. Both LHS and RHS in Eq. (2.9)
can be computed given only the resolved fields (uj , ω). Thus, assuming that the optimal
free parameters CS and CR are equal in Eqs. (2.8) and (2.9), we estimate them from Eq.
(2.9) using the least squares minimization:

CS =
⟨(lj − hj)mj⟩

⟨mjmj⟩
, (2.10)

CR =
⟨(lj − hj − CSmj)bj⟩

⟨bjbj⟩
, (2.11)

where lj = ujω − ujω, hj = ujω − ujω, mj = (∆x)4|S|∂∇
2ω

∂xj
, bj = u′

j ω′ − u′
j ω′, and ⟨·⟩

denotes horizontal averaging. Equations (2.10) and (2.11) predict unique coefficients CS

and CR for every fluid layer and time step. Note that we first estimate the Smagorinsky
coefficient CS (Eq. (2.10)), and only then the backscattering coefficient CR (Eq. (2.11))
for better numerical stability (see Perezhogin & Glazunov 2023, in Appendix D2).

2.3.2. Numerical implementation

We consider the one-dimensional filter of Sagaut & Grohens (1999)

ϕ
x

i =
ϵ2

24
(ϕi−1 + ϕi+1) + (1− ϵ2

12
)ϕi (2.12)
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which has FGR = ∆/∆x = ϵ ≤
√
6. We apply it along two horizontal directions to

create a two-dimensional LES filter (·) ≡ (·)
yx

= (·)
xy

. An additional filter with FGR =√
12 is given by two iterations of two-dimensional filter with ϵ =

√
6. The boundary

values are set to zero for every iteration of the two-dimensional filter. Changing boundary
conditions to ∂yu = 0 and ∂xv = 0 when the filter is applied to the velocity field may
be favorable to eliminate commutation error with the curl operator near the boundary
(not yet implemented in MOM6). The commutation error away from the boundaries is
second order in the filter width (Ghosal & Moin 1995) and related to the grid spacing,
which is uniform in spherical coordinates but nonuniform in cartesian coordinates.

The inverse direction of the energy cascade in 2D fluids can result in the prediction of
a negative Smagorinsky coefficient which may potentially lead to numerical instabilities.
This issue is often resolved in 2D fluids by clipping the numerator of Eq. (2.10) before
spatial averaging, which is an ad hoc approach. In this work, we ensure that CS is positive
and has physically relevant values (CS ≈ 0.05) by using an eddy viscosity model that has
a positive correlation with subfilter fluxes (biharmonic viscosity model) and by increasing
the FGR parameter. Note, however, that we clip Eq. (2.10) after the spatial averaging.
This clipping is activated occasionally during a transient startup phase, in the lower fluid
layer, and at the coarsest resolutions. Further, the coefficient CS , as predicted by Eq.
(2.10), is passed to the eddy viscosity module of MOM6, which is implemented using
momentum fluxes for stability reasons.

We found that CR, as predicted by Eq. (2.11), is sensitive to the artifacts near the
boundary. Therefore, we exclude ten points closest to the boundary from the horizon-
tal averaging operator ⟨·⟩, achieving accurate predictions (CR ≈ 20). The exclusion of
boundary points may be necessary due to the fact that horizontal averaging is performed
along non-homogeneous directions (x, y). This issue might be mitigated by employing a
localized formulation of the dynamic procedure using Lagrangian averaging (Meneveau
et al. 1996).

2.4. Thickness closure

We propose a new subfilter closure for thickness fluxes following Bardina et al. (1980):

λj ≈ ujh− ujh. (2.13)

The predicted thickness flux is converted to a streamfunction Ψj defined on the interfaces
(upper and lower) of the fluid layer similar to Gent & McWilliams (1990) as follows:
Ψj |upper −Ψj |lower = λj with the boundary conditions Ψj = 0 at the ocean surface and
floor. Note that such conversion is not unique and may be challenging in vanishing fluid
layers. Our implementation is numerically stable as a result of three factors: dissipative
numerical scheme for thickness equation, converting thickness fluxes to a streamfunction,
and limiting the streamfunction to prevent negative thickness.

3. Results

We evaluate the vorticity closure (Section 2.3) in the Double Gyre configuration of the
MOM6 ocean model. Our analysis starts by examining three filter widths ∆ (in relation
to the Rossby radius), followed by considering three values of the sole input parameter
to the subfilter closure, FGR = ∆/∆x.
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Figure 2. Subfilter kinetic energy (KE) transfer in a-priori analysis at FGR =
√
12 (a-c) and

spatial spectrum in a-posteriori simulations at three FGRs (d-f) for vorticity closure described
in Section 2.3. The backscatter can be seen as the positive energy transfer in panels (a-c). All
spectra correspond to a box (5◦−15◦E) × (35◦−45◦N) in upper fluid layer. Each column shows

a different filter scale ∆ denoted with vertical gray line. The dashed line on panels (a-c) shows
vorticity closure with parameters CS and CR inferred from a-priori subfilter flux data σj which
is not available a-posteriori.

3.1. A-priori accuracy

The main challenge in parameterizing vorticity fluxes is the need to predict strong kinetic
energy backscatter, which appears as a prominent positive energy transfer in large scales
(Figure 2(a-c)). The proposed vorticity closure accurately predicts the energy transfer
spectrum a-priori when the filter scale ∆ corresponds to the inertial range of the energy
spectrum, see green line in Figure 2(a). However, when the filter scale is outside of the
self-similar range, the backscatter prediction is too small compared to the subfilter data,
see Figure 2(b,c).
The drop of a-priori accuracy can be associated with two alternative reasons. (1) The

desired energy transfer cannot be expressed with the subfilter closure (Eq. (2.8)) for any
combination of parameters CS and CR or (2) dynamic estimation of these parameters
is inaccurate when the dynamic procedure is applied outside of the self-similar range.
To distinguish between these two reasons, we estimate the optimal values of parameters
CS and CR by minimizing the mean squared error in the prediction of the subfilter
fluxes σj diagnosed from the high-resolution simulation. A subfilter closure with optimal
parameters is similar to the closure with dynamically estimated parameters, compare
dashed and green lines in Figure 2(a-c). Thus, we infer that the drop in a-priori accuracy
is perhaps due to the first reason. From a physical perspective, subfilter modeling becomes
particularly difficult because backscatter occurs already at a filter scale, see Figure 2(c).

3.2. A-posteriori accuracy

We report the sensitivity of the a-posteriori results to the FGR = ∆/∆x parameter. The
simulations at FGR = 2 have too large energy density in the small scales compared to
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Surface relative vorticity 

in Coriolis units, ω/f

Figure 3. Snapshots of the high-resolution model and its filtered versions in upper row and
a-posteriori simulations with the vorticity closure (Section 2.3) in lower row; FGR =

√
12.

the filtered high-resolution data (Figure 2(d)) mainly because the predicted Smagorinsky
coefficient (CS ≈ 0.00 − 0.01) is too small compared to a default value of CS = 0.06.
We alleviate this issue by increasing the FGR parameter which is possible because the

dynamically estimated Smagorinsky coefficient scales as CS ∼ ∆
4
.

Panels (d) and (e) in Figure 2 demonstrate the success of the explicit filtering approach
– the a-posteriori LES simulations converge to the filtered high-resolution data when the
FGR parameter is increased (∆/∆x → ∞) at a fixed filter scale (∆ = const). However,
the rate of convergence of a-posteriori simulations depends on the filter scale. When
the filter scale corresponds to the inertial range, convergence is achieved at FGR =

√
6

(Figure 2(d)); when the filter scale corresponds to the energy-generation scales (Rossby
radius), the convergence requires wider base filter with FGR =

√
12 (Figure 2(e)). Finally,

at the largest filter scale convergence to the filtered high-resolution data was not achieved
(Figure 2(f)). For snapshots of the solution, see Figure 3.
Here we emphasize that the grid resolutions, at which the convergence to the filtered

high-resolution data was observed (≈ 1/6◦ − 1/8◦), are enough to simulate the large
scales directly, see Figure 1(b). This may lead to a conclusion that the vorticity closure
only provides marginal improvements over the biharmonic Smagorinsky model. However,
in the remainder of this report we show that the proposed closure has a favorable impact
on additional metrics of the mean flow even when using a large FGR or an FGR that is
not sufficient to converge to the filtered high-resolution data.

3.3. Comparison to baseline parameterizations

Based on the analysis above, we set the FGR parameter to
√
12, which is optimal for

the intermediate grid resolutions ≈ 1/4◦, and run simulations for a range of resolutions
1/2◦ − 1/8◦ (see Figure 4). Our baseline closure, the biharmonic Smagorinsky model,
has too large available potential energy (APE), and a significant error in time-mean
sea surface height (SSH). The proposed vorticity closure reduces the APE towards the
reference value and improves the error in time-mean SSH at all resolutions (Figure 4(b,c)).
We consider another baseline – the momentum closure that was significantly tuned
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Figure 4. Three a-posteriori metrics as a function of resolution. Baseline parameteriza-
tions: biharmonic Smagorinsky model (CS = 0.06), and its combination with “ZB20-Smooth”
(Perezhogin et al. 2023) or Gent & McWilliams (1990) (with thickness diffusivity 125m2s−1).
The proposed vorticity (Section 2.3) and combined vorticity+thickness (Sections 2.3, 2.4) clo-

sures have FGR =
√
12.

with respect to a-posteriori metrics, a modification of the gradient model of Zanna &
Bolton (2020), abbreviated as “ZB20-Smooth” (Perezhogin et al. 2023). The proposed
vorticity closure offers similar performance in all three metrics (KE, APE, error in SSH)
as compared to the ZB20-Smooth at resolutions 1/5◦ − 1/8◦ (Figure 4) but with the
advantage of a more transparent tuning procedure. At the coarsest resolution (1/2◦), the
vorticity closure is better in predicting the APE and SSH, although, this improvement
can be partially attributed to a small predicted Smagorinsky coefficient at this resolution
(CS ≈ 0.00 − 0.01). Note that the vorticity closure slightly overestimates the kinetic
energy of the filtered high-resolution model at resolutions 1/5◦ − 1/8◦ (Figure 4(a)).
Further, combining the vorticity closure with the thickness closure reduces the error

in SSH at the coarsest resolutions 1/2◦ − 1/3◦ (Figure 4(c)). Overall, a combined vortic-
ity+thickness closure has a performance comparable to a baseline thickness downgradient
parameterization of Gent & McWilliams (1990) at the coarsest resolutions (1/2◦-1/3◦)
and to the momentum closure of Zanna & Bolton (2020) at the highest resolutions
(1/5◦ − 1/8◦). Additionally, compared to the Gent & McWilliams (1990) parameter-
ization, the proposed thickness closure does not spuriously reduce the kinetic energy
and does not require tuning of the free parameter as a function of resolution (i.e., it is
“scale-aware”, see Bachman et al. 2017).

4. Conclusions

The primary difference between the large-scale ocean dynamics and 3D turbulence is
the underlying flow but not the methods that can be used for their analysis and param-
eterization. In this context, we parameterize mesoscale eddies in GFDL MOM6 ocean
model with a lateral subfilter closure of vorticity fluxes by Perezhogin & Glazunov (2023)
and improve it with the dynamic procedure of Yuan et al. (2022) using explicit filtering.
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The successful application of the explicit filtering approach was verified by establishing
convergence of the LES ocean simulations to the filtered high-resolution ocean model for
sufficiently resolved grids (1/6◦− 1/8◦). We found that contrary to the common practice
of increasing the kinetic energy while invoking subfilter closures (to capture backscatter),
this is not necessary in our configuration. This is primarily because the filter applied to
the high-resolution data assigns a significant portion of the kinetic energy to the subfilter
scales at practical FGR (

√
12).

We also show that the proposed vorticity closure is accurate in predicting the poten-
tial energy and time-mean sea surface height across a range of resolutions (1/2◦ − 1/8◦),
achieving similar or better results than a recently suggested parameterization (Perezhogin
et al. 2023). We also report the limitations in the proposed model when the filter scale ap-
proaches the energy-containing scales (the a-priori performance worsens and a-posteriori
results do not converge to the filtered high-resolution data). These issues may stem from
the need to use a large FGR at coarse resolution, which increases the spatial extent of the
subfilter closure. Future work should focus on developing more localized in-space closures
that can accurately capture subfilter fluxes at coarse resolution.

Finally, we show that the LES methods can be successfully applied for the prediction of
thickness fluxes and propose a model of Bardina et al. (1980) for this purpose. It further
improves the mean flow at the coarsest resolutions (1/2◦ − 1/3◦) without spuriously
reducing the KE and thus may be a good alternative to Gent & McWilliams (1990)
parameterization.
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