
Generalizable Neural‐Network Parameterization of
Mesoscale Eddies in Idealized and Global Ocean Models
Pavel Perezhogin1 , Alistair Adcroft2 , and Laure Zanna1,3

1Courant Institute of Mathematical Sciences, New York University, New York, NY, USA, 2Program in Atmospheric and
Oceanic Sciences, Princeton University, Princeton, NJ, USA, 3Center for Data Science, New York University, New York,
NY, USA

Abstract Data‐driven methods have become popular to parameterize the effects of mesoscale eddies in
ocean models. However, they perform poorly in generalization tasks and may require retuning if the grid
resolution or ocean configuration changes. We address the generalization problem by enforcing physics
constraints on a neural network parameterization of mesoscale eddy fluxes. We found that the local scaling of
input and output features helps to generalize to unseen grid resolutions and depths offline in the global ocean.
The scaling is based on dimensional analysis and incorporates grid spacing as a length scale. We formulate our
findings as a general algorithm that can be used to enforce data‐driven parameterizations with dimensional
scaling. The new parameterization improves the representation of kinetic and potential energy in online
simulations with idealized and global ocean models. Comparison to baseline parameterizations and impact on
global ocean biases are discussed.

Plain Language Summary Ocean models can't directly simulate eddies that are smaller than the
resolution of the computational grid. The effect of these eddies is represented by parameterizations. Machine
learning offers a new way to build parameterizations directly from data, however, such parameterizations may
fail when tested in new, unseen scenarios. Here, we leverage physics constraints to mitigate this, generalization,
problem. Specifically, we found that method of dimensional analysis can be used to constrain data‐driven
parameterizations to enhance their accuracy in new scenarios without the need for retraining. New
parameterization is tested in a realistic ocean model and brings us closer to robust, data‐driven methods for
ocean and climate models.

1. Introduction
Numerical ocean models rely on parameterizations to represent the effects of physical processes smaller than the
model grid spacing, which are unresolved (Christensen & Zanna, 2022; Fox‐Kemper et al., 2019; Hewitt
et al., 2020). Recently, there has been a growing interest in applying machine learning methods to parameterize
these subgrid physics in ocean models (Bolton & Zanna, 2019; Guillaumin & Zanna, 2021; Maddison, 2024;
Perezhogin, Zhang, et al., 2024; Sane et al., 2023; Yan et al., 2024; Zanna & Bolton, 2020; Zhang et al., 2023).
However, developing data‐driven parameterizations for ocean models is still in its early stages, and their
application is often limited to idealized configurations. Deploying data‐driven parameterizations in the global
ocean presents several challenges, one of which is addressed in this study—the problem of generalization to
unseen scenarios.

Data‐driven parameterizations rely heavily on sets of training data, and their successful implementation often
requires tuning when applied to a new grid resolution (Zhang et al., 2023), flow regime (Ross et al., 2023), model
configuration (Perezhogin, Zhang, et al., 2024), depth, or geographical region (Gultekin et al., 2024). However, in
practice, it would be desirable to have a single parameterization that performs effectively across a variety of
scenarios without requiring retuning. The ability of a data‐driven model to work on new (testing) data, which is
distinct from the training data, is measured by the generalization error (Bishop & Nasrabadi, 2006; Hastie
et al., 2009). Data‐driven methods work best when the testing data is drawn from the same distribution as the
training data. However, in geophysical applications, the distribution of physical variables can vary vastly across
different scenarios—a phenomenon referred to as a distribution shift (Beucler et al., 2024; Gultekin et al., 2024).
In this case, domain knowledge and physics constraints can be leveraged to mitigate the generalization error of
data‐driven models (Kashinath et al., 2021).
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In this work, we demonstrate how physics constraints can be leveraged to enhance the generalization of an
Artificial Neural Network (ANN) parameterization of the ocean mesoscale eddy fluxes. Following Beucler
et al. (2024), we rescale features of the ANN to minimize the distribution shift. To identify a suitable normali-
zation technique for eddy fluxes, we apply dimensional analysis and Buckingham (1914)'s Pi theorem. Specif-
ically, we introduce a local dimensional scaling constructed from the grid spacing and velocity gradients (Prakash
et al., 2022). The local scaling improves offline generalization of the ANN parameterization to unseen grid
resolutions and depths, as found in the global ocean data set CM2.6 (Griffies et al., 2015). Our findings are
formulated as a general algorithm that can be used to incorporate the dimensional scaling in future applications.
Additional physics constraints for the ANN parameterization are enforced following Guan et al. (2022) and
Srinivasan et al. (2024). We present an online evaluation of the new ANN parameterization in the GFDL MOM6
ocean model (Adcroft et al., 2019) in idealized and global configurations.

2. A Method to Constrain Neural Network With Dimensional Scaling
Here we introduce the concept of physical dimensionality and demonstrate how it can be used to constrain data‐
driven parameterizations. We start with a trivial example, followed by a general algorithm. Finally, we draw
connections to existing approaches.

2.1. Trivial Example

Consider the case where a scalar momentum flux T (units of m2 s− 2) can be predicted using a length scale Δ (units
of m) and inverse time scale X (units of s− 1):

T = f (Δ,X). (1)

Equation 1 must remain invariant under rescaling the units of time and length, that is for any α,β > 0, the equality
must hold: f (αΔ,βX) = α2β2f (Δ,X). However, the unit invariance can be violated when f is parameterized by
neural networks. One way to enforce it is by leveraging Buckingham (1914)'s Pi theorem, which states that the
dimensional equation (such as Equation 1) can be rewritten in non‐dimensional form. Specifically, for a set of
three dimensional variables (T, Δ, X) with two independent dimensions (length and time), there is only one (three
minus two) non‐dimensional variable (π1 = T/(Δ2X2)). Thus, Equation 1 transforms to π1 = const, or
equivalently:

T = Δ2X2θ, (2)

where θ can be interpreted as a non‐dimensional Smagorinsky (1963) coefficient. A data‐driven parameterization
in the form of Equation 2 with a trainable parameter θ, which is constant, follows the dimensional scaling as a hard
constraint, in contrast to Equation 1, which does not guarantee dimensional consistency. Equation 2 promotes
generalization as it explicitly accounts for the change in the magnitude of independent variables (Δ and X),
constraining the learnable part of the mapping (θ) to be on the order of unity.

2.2. General Algorithm

Extending the example above, we suggest an algorithm to enforce dimensional scaling in ANN parameterizations
by preprocessing input and output features:

1. Identify the input features that contribute significantly to the accurate prediction of the output features;
2. Construct non‐dimensional input and output features from a combined set of identified input and output

features;
3. Verify that a traditional known parameterization is a special case of the constructed non‐dimensional mapping.

Step 1 follows standard dimensional analysis textbooks (Barenblatt, 1996; Bridgman, 1922). Specifically, a
relevant set of input features can be identified by physical intuition or through ablation studies by evaluating the
gain in offline performance from including additional dimensional features in the input set. Constructing non‐
dimensional features is a common approach in physics‐constrained data‐driven parameterizations (Ling
et al., 2016; Schneider et al., 2024). However, the normalization of input features is often considered separately
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from the normalization of output features (Beucler et al., 2024; Christopoulos et al., 2024; Kang et al., 2023; Xie
et al., 2020), unlike our proposed method (step 2 above). Additionally, the emphasis in these works is often placed
on identifying normalization factors that minimize the distribution shift, while we suggest starting with identi-
fying features responsible for the prediction (step 1). Finally, traditional parameterizations are often used to
propose efficient normalization factors (Connolly et al., 2025; Kang et al., 2023; Xie et al., 2020), while we
instead advocate for having traditional parameterizations as a special case (step 3, Prakash et al. (2022, 2024)).

3. Physics Constraints for Ocean Mesoscale Parameterization
Our goal is to predict the subfilter momentum fluxes of mesoscale eddies using an Artificial Neural Network
(ANN) parameterization, see schematic in Figure 1a. Various physical invariances were imposed to promote
generalization.

3.1. Learning Subfilter Fluxes

We consider the acceleration produced by subfilter ocean mesoscale eddies (subfilter forcing, Bolton &
Zanna, 2019):

∂tu = S = (u ⋅∇) u − (u ⋅∇)u, (3)

where u = (u,v) is the horizontal ocean velocity, ∇ = (∂x,∂y) is the horizontal gradient, and (⋅) is the horizontal
filter. The subfilter forcing can be approximated (Loose, Marques, et al., 2023) as a divergence of the momentum
flux:

S ≈ ∇ ⋅T (4)

where

T = (
Txx Txy

Tyx Tyy
) = (

u u − uu u v − uv

u v − uv v v − vv
). (5)

We predict the three components of T, namely Txx, Txy, Tyy, rather than S directly, similarly to Zanna and
Bolton (2020) (ZB20 hereafter) to impose momentum conservation as a hard constraint. We enforce symmetry of
the tensor T by predicting Txy and sharing its prediction with Tyx, which guarantees angular momentum con-
servation (Griffies, 2018, Section 17.3.3), up to machine precision. We also promote rotational and reflection
invariances via data augmentation (Guan et al., 2022), independently rotating each training snapshot by 90° and
reflecting it along the x and y axes, resulting in 8 = 23 augmented snapshots per original one.

We learn the components of T by minimizing the mean squared error (MSE) loss function:

LMSE = ‖(S − ∇ ⋅ T̂) ⋅m‖22/‖S ⋅m‖
2
2, (6)

where m is the mask of wet points and T̂ is the neural network prediction of the subfilter flux as discussed below.
See Supporting Information S1 for further details.

3.2. Input Features

Here, we identify the input features relevant for the prediction of momentum fluxes (step 1 of the algorithm
presented in Section 2.2).

Following ZB20, we consider the components of the strain‐rate tensor and vorticity as input features:
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Figure 1. (a) Artificial neural network (ANN) parameterization predicting the divergence of subfilter fluxes given the velocity gradients on the horizontal stencil of
3 × 3 points. (b) Snapshots of predictions by two ANNs: with local dimensional scaling (Equation 11, center column) or with fixed normalization coefficients
(Equation 10, right column) at the resolution (0.9°) and depth (5 m) used for training (testing data is separated by 10 years). (c) Prediction at the unseen resolution (0.4°)
and the same depth (5 m). (d) Coefficient of determination (R2) in prediction of subfilter forcing for various resolutions and depths, different from that used for training
(0.9°, 5 m). The R2 is averaged over 2 years of held‐out data and excludes 2 grid points adjacent to the coastline, where green and orange boxes correspond to panels (b, c),
respectively.
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σS = ∂yu + ∂xv – shearing strain,

σT = ∂xu − ∂yv – horizontal tension/stretch,

ω = ∂xv − ∂yu – relative vorticity.

(7)

These input features exclude explicit dependence on the velocity, guaranteeing Galilean invariance of the
parameterization (Ling et al., 2016; Lund & Novikov, 1993; Pope, 1975; Srinivasan et al., 2024). When using the
input features (Equation 7) pointwise, the resulting ANN parameterization highly correlates with the ZB20
equation‐discovery model. Thus, we decided to include the non‐local contribution of these features (Gultekin
et al., 2024; Maulik et al., 2019; Maulik & San, 2017; Pawar et al., 2020; Srinivasan et al., 2024; Wang
et al., 2021, 2022). To do so, the input vector to the ANN consists of velocity gradients, each defined on a 3 × 3
horizontal stencil and flattened into a vector of length 9 (denoted as [⋅] ↕9):

X =

⎛

⎜
⎜
⎜
⎜
⎝

[σS] ↕9

[σT] ↕9

[ω] ↕9

⎞

⎟
⎟
⎟
⎟
⎠

∈R27. (8)

To facilitate generalization across different resolutions (scale‐aware or grid‐aware parameterization, Bachman
et al., 2017), we account for the local grid spacing of the coarse resolution model Δ =

̅̅̅̅̅̅̅̅̅̅̅̅
ΔxΔy

√
, resulting in the

following functional form of the parameterization (Li et al., 2025; Lund & Novikov, 1993):

T ≈ T̂(X,Δ). (9)

Accounting for grid spacing is physically justified as velocity gradients and momentum fluxes differ in
dimensionality and require a length scale to be invoked.

3.3. Neural Network Parameterizations

We consider a baseline data‐driven parameterization of eddy fluxes with fixed normalization coefficients,
following the form of Equation 9:

T̂(X,Δ) = aTANNθ (X/aX,Δ/aΔ), (10)

where ANNθ is the neural network with trainable parameters θ. Coefficients aT = 10− 2 m2 s− 2 and
aX = 10− 6 s− 1 approximate the standard deviations of eddy fluxes and velocity gradients in our data set, and
aΔ = 50 km. Using fixed normalization coefficients in parameterizations similar to Equation 10 is a common
practice (Srinivasan et al., 2024). Below, we contrast this approach to a normalization that follows solely from
dimensional analysis presented in Section 2.2.

A combined set of input and output features (T, X, Δ) is used to construct non‐dimensional input (X/‖X‖2) and

output (T/ (Δ2‖X‖22)) features (step 2 in Section 2.2), where ‖X‖2 =
̅̅̅̅̅̅̅̅̅̅̅

∑iX
2
i

√

. This normalization of features is

local, that is computed separately for each grid point. By designing the ANN to operate on non‐dimensional
variables, we propose a parameterization with the local dimensional scaling (Prakash et al., 2022; Reissmann
et al., 2021):

T̂(X,Δ) = Δ2‖X‖22ANNθ (X/‖X‖2). (11)

According to the Buckingham (1914)'s Pi theorem, there is freedom in constructing non‐dimensional variables.
We opt to use the non‐dimensional vector X/‖X‖2 to constrain the range of its components between − 1 and 1,
thereby reducing the distribution shift in ANN inputs.
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Following step 3 in Section 2.2, we show that the model form (Equation 11) admits ZB20, Smagorinsky,
biharmonic Smagorinsky, and Leith (1996) parameterizations as special cases, with well‐behaved functional
representations (see Text S1 in Supporting Information S1 for details). Furthermore, Equation 11 guarantees that
the predicted fluxes vanish ( T̂ → 0) as velocity gradients diminish (X → 0), similarly to known parameteri-
zations, see Text S2 in Supporting Information S1. We experimentally verified that the spatial variability of the
normalization factor (

⃦
⃦X‖2) in Equation 11 does not amplify the parameterization errors (S − ∇ ⋅ T̂) compared

to Equation 10.

4. Experimental Setups
4.1. Training Data Set

The training data set is created using the climate model CM2.6 (Griffies et al., 2015), which has a nominal ocean
resolution of 0.1°. Velocity gradients (Equation 7), used as input features, and subfilter forcing (S, Equation 3),
used as output, are diagnosed using horizontal filtering followed by coarse‐graining, which avoids the inclusion of
discretization errors (Agdestein & Sanderse, 2025; Christensen & Zanna, 2022; Guillaumin & Zanna, 2021). The
filtering is applied by sliding a Gaussian kernel with a filter width three times the width of the target coarse grid
box, using Grooms et al. (2021), Loose et al. (2022). Subsequent coarse‐graining is done by averaging over the
fine grid boxes contained within each coarse grid box. The filtering and coarse‐graining are done for 4 coarse
resolutions and 10 depth levels (Figure 1d and Table S1 in Supporting Information S1).

4.2. ANN Architecture

In the offline analysis of ANN parameterizations (Equations 10 and 11), we use a neural network with two hidden
layers, 32 neurons each, which was found to be sufficiently large to effectively learn from the input features. See
Text S3 in Supporting Information S1 for details.

4.3. Online Implementation

We implement the proposed ANN mesoscale eddy parameterization (Equation 11) in two considerably different
configurations of the GFDL MOM6 ocean model (Adcroft et al., 2019) at eddy‐permitting (1/4°) resolution. To
ensure that ANN inference remains computationally efficient, we retrain a smaller network with only one hidden
layer and 20 neurons, which keeps the ANN inference time below 10% of the ocean model runtime (Text S3 in
Supporting Information S1 for details). While our goal was to implement the ANN parameterization without
further modifications, minor adjustments were necessary for numerical stability, see Text S4 in the Supporting
Information S1.

The idealized ocean configuration, NeverWorld2 (NW2, Marques et al. (2022a, 2022b)), includes 15 stacked
shallow water layers, featuring a single basin ocean with a reentrant channel. The circulation is driven by a steady
wind forcing, giving rise to a circumpolar current and gyres. Coarse simulations are initialized from rest, and run
for 30,000 days, similar to Marques et al. (2022a, 2022b) and Perezhogin, Zhang, et al. (2024).

The second configuration, OM4 (Adcroft et al., 2019), is a coupled ocean‐sea‐ice model forced at the air‐sea
interface by prescribing the atmosphere state according to the CORE‐II interannual forcing (IAF) protocol
(Large & Yeager, 2009). The simulations span 60 years (1948–2007) and were initialized with a state of the
Control model after 270 years of spin‐up.

The biharmonic Smagorinsky scheme for gridscale dissipation is used with viscosity coefficient

ν4 = 0.06
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2S + σ2T
√

Δ4 (Adcroft et al., 2019), applied in control and parameterized (mixed modeling, Meneveau

and Katz (2000)) simulations.

5. Results
5.1. Offline Generalization

Our primary goal is to demonstrate that the local dimensional scaling promotes the generalization of the eddy
parameterization to unseen grid resolutions and depths. Limited generalization in such scenarios has been
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reported for previous machine‐learning models of mesoscale eddies (Gultekin et al., 2024; Ross et al., 2023;
Zhang et al., 2023) and traditional physics‐based parameterizations (Yankovsky et al., 2024).

We compare two ANNs: one incorporating local dimensional scaling (Equation 11) and a baseline ANN with
fixed normalization coefficients (Equation 10). To explore generalization, we let the ANNs learn based solely on
data from one combination of depth (5 m) and coarse grid resolution (0.9°) during training. The local grid spacing
varies according to the tripolar grid used in the ocean component of the CM2.6 climate model. In particular, at the
nominal resolution of 0.9°, the coarse grid spacing Δ =

̅̅̅̅̅̅̅̅̅̅̅̅
ΔxΔy

√
is in a range from 50 to 100 km for non‐polar

latitudes (60S° − 60N°). Spatially varying grid spacing provides essential information for effective learning by the
baseline ANN. The offline evaluation of ANNs on held‐out data similar to that used for training is shown in
Figure 1b. Both ANNs exhibit high and equal pattern correlation (0.90) and R2 (0.81) in the prediction of the norm
of subfilter forcing.

We now consider generalization to a different grid resolution, which is finer (0.4°) compared to that used for
training (0.9°), see Figure 1c. The range of grid spacings in this case is beyond the range seen by a baseline ANN
during training, resulting in a distribution shift between the testing and training data. The baseline ANN param-
eterization (Equation 10) predicts the norm of subfilter forcing at a new grid resolution with a reasonably high
pattern correlation (0.85). However, the magnitude of the prediction is too large, resulting in a low R2 (− 2.71).
Instead, the ANNwith dimensional scaling (Equation 11) offers improved generalization capability. The proposed
ANNnaturally accounts for the reduction of the grid spacing and reduces themagnitude of the prediction, resulting
in high pattern correlation (0.94) and R2 (0.87) metrics (Figure 1c).

The generalization to both finer and coarser grids, and different depths, is summarized in Figure 1d. At coarser
grid spacings (1.2°, 1.5°) compared to that used for training (0.9°), the local dimensional scaling again helps to
achieve higher R2 by increasing the magnitude of the prediction.

In the deep layers, the subfilter forcing and velocity gradients are approximately one order of magnitude smaller
than near the surface. Thus, a baseline ANN, trained on much larger values near the surface (such as here, at depth
5 m), can lead to inaccurate predictions at depth (Figure S1 in Supporting Information S1). However, the local
dimensional scaling effectively rescales the input features, thereby improving generalization to deep, unseen
layers, as summarized in Figure 1d.

The major reason why baseline ANN has a poor skill at unseen resolutions and depths is the lack of training data.
We verified that the generalization of the baseline ANN to various resolutions and depths can be restored if these
resolutions and depths are included in the training data set. Incorporating local dimensional scaling as done in this
work, therefore, requires less training data and improves out‐of‐distribution generalization.

5.2. Online Evaluation in the MOM6 Ocean Model

We use all available depths and grid resolutions shown in Figure 1d for training to make the implemented ANN
parameterization (Equation 11) less tied to any specific resolution or depth. The retrained, smaller ANN (see
Section 4.3) exhibits a slightly lower offline skill (R2) than the version described earlier, on average, by 0.1
(Figure S5 in Supporting Information S1).

5.2.1. Idealized Configuration NeverWorld2

We first consider an idealized adiabatic ocean configuration NW2, which generates various circulation patterns
similar to the global ocean but allows us to isolate the effect of mesoscale eddies. Our goal is to show that the
impact of the ANN parameterization on the flow is similar to that of increasing the horizontal resolution.

Mesoscale eddies extract available potential energy, APE = ρ
2∑kgḱ (η

2
k − (ηrefk )

2
), from the mean flow, which is

then converted into the eddy kinetic energy, EKE = ρ
2 (|u2|

t
− |ut|2) (Salmon, 1980). Here, (⋅)t is the temporal

averaging, ρ is the density, gḱ is the reduced gravity of k‐th isopycnal interface, ηk is the interface height and ηrefk is
the state of rest with flat isopycnals. At an eddy‐permitting resolution (1/4°), this energy pathway is partially
unresolved (Jansen & Held, 2014; Juricke et al., 2019; Loose, Bachman, et al., 2023; Mana & Zanna, 2014). As a
result, the coarse ocean model has too low EKE and too large APE when compared to the filtered and coarse‐
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grained high‐resolution simulation, denoted as 1/ 32° (Figures 2a–2c). However, Figure 2a suggests that the
missing eddies can be nominally resolved on the coarse grid. Traditional backscatter parameterizations are
designed to directly reduce this EKE bias by energizing the resolved eddies, resulting in additional extraction of
APE (Jansen & Held, 2014; Yankovsky et al., 2024).

Eddy backscatter is diagnosed when the kinetic energy transfer produced by the subfilter forcing (Equation 3) is
predominantly positive (upscale), as shown in Figure 2b. We verified that our ANN parameterization accurately
predicts the eddy backscatter offline (Figure S2 in Supporting Information S1), suggesting reasonable general-
ization capabilities of our approach. In Figure 2e, we show a more challenging task—the prediction of the eddy
backscatter online once the ANN is coupled to the coarse ocean model. The online prediction of eddy backscatter
grossly resembles the diagnosed data shown in Figure 2b, although there are slight differences caused by the
difference in distributions of input features.

The kinetic energy injection from the ANN parameterization leads to an increase in EKE that aligns with the high‐
resolution data, in particular in the ACC (Antarctic circumpolar current) region (40°S− 60°S), near the western
boundaries, and in the subtropics (20°S− 20°N), see Figure 2d. However, the EKE increase in western boundary
current extension (40°N, 10°E − 20°E) and subpolar gyre (50°N− 70°N) is smaller than expected from the high‐
resolution simulation. The spatial pattern of APE reduction in the parameterized simulation is close to that
produced by increasing horizontal resolution (Figure 2f). The APE is predominantly reduced in the Southern
Ocean and ACC regions (40°S− 70°S), followed by APE reduction in gyres (20°N− 60°N, 20°S− 40°S). Local
patches of APE increase in the higher resolution model (Figure 2c) correspond to enhanced horizontal recircu-
lation and are reproduced by the ANN parameterization, but less accurately compared to the diagnosed APE
reduction.

Consequences of APE reduction include flattening of isopycnals and improving the structure of isopycnal in-
terfaces across multiple cross‐sections (Figure S3 in Supporting Information S1), along with a weakening of ACC
transport through the Drake Passage (Table S3 in Supporting Information S1).

5.2.2. Global Ocean‐Sea‐Ice Model OM4

We next evaluate the ANN parameterization in the global ocean model OM4. Unlike in the idealized configu-
ration, the interaction of many physical processes in driving the circulation in the global ocean model impede our
ability to directly isolate the effect of mesoscale eddies (Ferrari & Wunsch, 2009; Lévy et al., 2010). Building on
the dynamical expectations established in the idealized NW2 configuration, our goal is to assess whether the
global ocean model exhibits similar response patterns to the eddy parameterization.

The prediction of the kinetic energy injection by the ANN parameterization online is shown in Figure 3a.
Similarly to the idealized configuration, the kinetic energy is injected in the subtropical gyres, near the western
boundaries, and occasionally in the ACC region. The energy injection is accompanied by an increase of the EKE
in the same locations, see Figure 3b. However, compared to the pattern found in an idealized configuration, the
EKE decrease appears more frequently: along topographic features in the subpolar gyres of the North Atlantic and
North Pacific oceans, and occasionally in the ACC region. The decrease of EKE in these regions is due to a shift or
weakening of the mean currents, potentially as a result of the removal of kinetic energy by the ANN parame-
terization along the lateral boundaries, changes in deep water formation, and/or changes in global overturning
circulation. The complexity of the model prohibits us from identifying a single mechanism.

Similarly to the idealized configuration, APE is primarily reduced in the Southern Ocean (− 12%), with minor
APE reductions observed in the Subpolar Gyres of the North Atlantic and North Pacific oceans (Figure 3c). APE
is additionally reduced in the Arctic Ocean despite the lack of increased eddy activity in this region. However, its
relative change is moderately small (− 2%).

We assessed whether the offline performance of the ANN parameterization correlates with the online results
(Figure S5 in Supporting Information S1). We found that using spatially non‐local features on a 3 × 3 stencil, as
in this study, is important for achieving higher offline skill in CM2.6 and improved energetics in OM4 compared
to a pointwise ANN parameterization and ZB20 closure. However, increasing the number of neurons, which also
contributes to the offline skill, has a smaller impact on the energetics. Note that the traditional anti‐viscosity
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Figure 2. Simulations in idealized configuration NeverWorld2 (Marques et al., 2022a). Difference (denoted as Δ) between filtered high‐resolution simulation at
resolution 1/32° and control simulation at resolution 1/4° in (a) Eddy Kinetic Energy (EKE) and (c) Available Potential Energy (APE). (b) Upscale Kinetic Energy (KE)
transfer produced by the subfilter forcing diagnosed from the high‐resolution simulation (positive values represent backscatter). Difference in EKE (d) and APE (f)
between the online simulation with the ANN parameterization utilizing the local dimensional scaling (Equation 11) and control simulation, both at resolution 1/4°. (e)
Prediction of the KE transfer by the ANN parameterization in online simulation. All metrics are depth‐integrated and averaged over 160 snapshots corresponding to the last
800 days of the simulations.
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parameterization is capable of improving energetics as well, while its offline skill is close to zero (Figure S5 in
Supporting Information S1, see also Ross et al. (2023)).

We note that the evaluation presented in this section is qualitative and can be strengthened by comparing the
parameterized global ocean model to filtered and coarse‐grained higher‐resolution simulations. Such evaluation
can be performed in future studies by implementing the proposed parameterization in the hierarchy of GFDL
climate models, CM4X, which differ in the horizontal resolution of the ocean component (Griffies et al., 2024).

5.2.3. Comparison to an Anti‐Viscosity Parameterization

We confront our ANN parameterization to a traditional anti‐viscosity parameterization representing mesoscale
eddy effects (Jansen et al., 2015) and already tested in OM4 by Chang et al. (2023). Repeating their analysis, we
found that both ANN and anti‐viscosity parameterizations reduce the regional biases in the Gulf Stream region,

Figure 3. Online evaluation of the ANN parameterization in the global ocean‐ice model OM4 (Adcroft et al., 2019) at eddy‐
permitting resolution (1/4°). The following depth‐integrated diagnostics are averaged over 1 year (2003): (a) upscale kinetic
energy transfer predicted by the ANN parameterization online, (b) difference in Eddy kinetic energy (EKE), (c) difference in
Available potential energy (APE). The integrated percentage change in EKE and APE relative to the control simulation is shown
for five ocean basins.
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see Figure S4 in Supporting Information S1 for sea surface temperature and salinity biases. The response in other
global ocean circulation metrics is remarkably similar for both parameterizations as well (Figure 4). Specifically,
both parameterizations increase the globally integrated kinetic energy by roughly the same percentage and reduce
the APE by nearly the same percentage. The restratification effect of mesoscale eddies leads to the reduction of
the globally‐averaged potential temperature (Adcroft et al., 2019; Griffies et al., 2015). As previously discussed,
the transport through the Drake Passage is reduced in both parametrized simulations, see also Grooms
et al. (2024). Unlike in Chang et al. (2023), both parameterizations weaken the Atlantic meridional circulation
(AMOC). This suggests that the AMOC response depends on the ocean model state, perhaps to a greater extent
than the details of mesoscale eddy parameterizations. The response in some global metrics (ACC, AMOC,
globally‐averaged potential temperature) does not appear to project onto the existing ocean model biases. That is,
both parameterized ocean simulations are less consistent with the observational data than the control simulation
(Figure 4). We note that our goal was to improve the representation of mesoscale eddy processes. Bias reduction is
not guaranteed due to compensating model errors from other parameterizations and remains an important di-
rection for future work. A full recalibration of the ocean model may be necessary, particularly for physical
processes competing with mesoscale eddies in determining average potential temperature and the strength of the
ACC and AMOC.

6. Discussion
We address the generalization issue of ANN parameterizations of mesoscale eddies by embedding physics
constraints into the inputs, outputs, and parametrization itself. The Buckingham (1914)'s Pi‐theorem and
dimensional analysis are invoked to obtain local normalization coefficients. The ANN parameterization with local
dimensional scaling significantly outperforms the ANN with fixed normalization coefficients offline, demon-
strating superior generalization to unseen grid resolutions and depths in the global ocean data CM2.6. A general
algorithm for constructing dimensional scaling, which can be applied to other neural‐network parameterizations,
is presented.

The proposed ANN parameterization with dimensional scaling is successfully tested online in the GFDL MOM6
ocean model. It accurately predicts upscale kinetic energy transfer, despite many challenges presented by online
implementation. The parameterization improves the energy pathways by energizing the resolved eddies and
reducing APE, consistent with the expected restratification effects of mesoscale eddies. These improvements hold

Figure 4. Comparison of the ANN parameterization to the negative viscosity backscatter parameterization (Chang
et al., 2023) in the global ocean‐ice model OM4. Kinetic energy (KE) and Available potential energy (APE) are integrated
globally. Potential temperature is averaged globally. ACC transport is computed at the Drake Passage section at 70°W, and
AMOC is computed as the maximum over depth streamfunction at 26.5°N.Model output is averaged over the years 1981–2007.
Observational data for potential temperature is given by World Ocean Atlas 2018 (WOA18, Locarnini et al. (2018)), for ACC
transport with error bar is given by cDrake (Donohue et al., 2016), and for AMOC is given by RAPID (Cunningham et al., 2007)
averaged over 2004–2021 years with error bar showing interannual standard deviation.
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across idealized (NW2) and global ocean (OM4) configurations, with the most pronounced APE reduction
occurring in the Southern Ocean. The ANN achieves comparable online performance to an existing backscatter
parameterization (Chang et al., 2023; Jansen et al., 2015) in OM4, and does not require significant retuning
between idealized and global setups.

We demonstrate the improved or similar performance of the ANN parameterization in NW2 compared to existing
backscatter schemes (Perezhogin, Zhang, et al., 2024; Yankovsky et al., 2024) across different resolutions
(1/3°− 1/6°, see Table S2 in Supporting Information S1). At 1/2°, however, the ANN offers no clear
improvement compared to the control simulation, likely due to less resolved eddies and stronger viscosity. At
coarser resolutions (∼1°), the subfilter momentum fluxes vanish as the Rossby radius is unresolved (Figure S6 in
Supporting Information S1). At such coarse resolutions, combining the ANN with bulk parameterizations or
online learning approaches may help (Maddison, 2024; Shankar et al., 2025), along with parameterizations
explicitly extracting APE (Bachman, 2019; Balwada et al., 2025; Grooms et al., 2024; Jansen et al., 2019;
Perezhogin, Balakrishna, & Agrawal, 2024).

Additional work is needed to enhance data‐driven parameterizations beyond the performance of traditional pa-
rameterizations in realistic global configurations. Both parameterization approaches exhibit substantial de-
partures from observations and contribute comparably to persistent model biases. This highlights the potential for
improving parameterization schemes, evaluation metrics, and model calibration in ocean modeling. Looking
ahead, the generalization issue addressed in this study has immediate implications for climate models, where
parameterizations must remain reliable under changing conditions.
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Text S1. Known parameterizations as a special case of dimensional scaling

Here, we show that enforcing the dimensional scaling constraint to the ANN parame-

terization is not too restrictive and admits multiple known parameterizations as a special

case with continuous functional representations (see Prakash, Jansen, and Evans (2022)

for discussion). We also show that these functional representations do not depend on the

normalization factor (||X||22) explicitly. This suggests that the choice of the normalization

factor primarily affects the range of inputs to the neural network, but not the function to

be learnt.

We denote the components of the predicted momentum fluxes as follows:

T̂(X,∆) = ∆2||X||22ANNθ(X/||X||2) ≡ (1)

∆2||X||22
(
ANNxx

θ (x) ANNxy
θ (x)

ANNxy
θ (x) ANNyy

θ (x)

)
, (2)

where the vector of input features is

X =

[σS] ↕9
[σT ] ↕9
[ω] ↕9

 ∈ R27 (3)

and x = X/||X||2.

Smagorinsky parameterization

We first consider a Smagorinsky (1963) subgrid parameterization:

T̂ = CS∆
2
√

σ2
S + σ2

T

(
σT σS

σS −σT

)
. (4)

This subgrid model can be given in the form of Eq. (2) if ANN parameterizes the following

functions:

ANNxx
θ (x) = CSx14

√
x2
5 + x2

14 (5)
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ANNyy
θ (x) = −ANNxx

θ (x) (6)

ANNxy
θ (x) = CSx5

√
x2
5 + x2

14, (7)

where x5 and x14 represent components of the non-dimensional vector x which are equal

to σS/||X||2 and σT/||X||2 in the center of 3× 3 spatial stencil, respectively. The derived

functions are continuous on a bounded domain (|xi| ≤ 1), and thus they can be easily

learned with the ANN. The functional representations of the parameterizations derived

below are continuous as well.

Zanna-Bolton 2020 parameterization

Similarly, we can show that Zanna and Bolton (2020) parameterization

T̂ = −γ∆2

(
−ω σS ω σT

ω σT ω σS

)
− 1

2
γ∆2(ω2 + σ2

T + σ2
S)

(
1 0
0 1

)
(8)

can be represented as follows:

ANNxx
θ (x) = γx5x23 −

1

2
γ(x2

5 + x2
14 + x2

23), (9)

ANNyy
θ (x) = −γx5x23 −

1

2
γ(x2

5 + x2
14 + x2

23), (10)

ANNxy
θ (x) = −γx14x23. (11)

Leith 1996 parameterization

Next, we consider Leith (1996) parameterization:

T̂ = CL∆
3|∇ω|

(
σT σS

σS −σT

)
. (12)

By approximating the gradient with central differences and assuming an isotropic and

uniform grid, we obtain:

ANNxx
θ (x) =

1

2
CLx14

√
(x24 − x22)2 + (x26 − x20)2, (13)

September 18, 2025, 9:21pm



X - 4 :

ANNyy
θ (x) = −ANNxx

θ (x), (14)

ANNxy
θ (x) =

1

2
CLx5

√
(x24 − x22)2 + (x26 − x20)2 (15)

Biharmonic Smagorinsky parameterization

The biharmonic Smagorinsky subgrid model has the form:

T̂ = −CS∆
4
√

σ2
S + σ2

T∇2

(
σT σS

σS −σT

)
. (16)

By approximating the ∇2 operator on an isotropic and uniform grid, we obtain:

ANNxx
θ (x) = −CS(x15 + x13 + x17 + x11 − 4x14)

√
x2
5 + x2

14, (17)

ANNyy
θ (x) = −ANNxx

θ (x), (18)

ANNxy
θ (x) = −CS(x6 + x4 + x8 + x2 − 4x5)

√
x2
5 + x2

14. (19)

Text S2. Robustness of division by small numbers

The robustness of the parameterization with the dimensional scaling,

T̂(X,∆) = ∆2||X||22ANNθ(X/||X||2), (20)

atX = 0 is achieved as follows. We first identify that most known parameterizations, such

as Smagorinsky (1963) and Leith (1996), predict zero fluxes when the velocity gradients

are zero. We enforce the same property for our parameterization by extending Eq. (20)

with:

T̂(X = 0,∆) = 0. (21)

Numerically, this property is implemented by adding a very small number (10−30s−1) to

the denominator in Eq. (20).
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Additionally, we ensure that Eq. (20) is continuous at X = 0, that is, the corresponding

limit exists and is equal to the function value (zero):

lim
X→0

T̂(X,∆) = T̂(X = 0,∆) = 0. (22)

The function ANNθ is continuous as a composition of continuous activation functions

(ReLU). Furthermore, for any ||X||2 > 0, the function ANNθ is evaluated on a unit

sphere, which is a compact set. Therefore, the continuous function ANNθ is bounded on

the compact set by some constant A(θ) that depends only on the trainable parameters θ.

We verify the limit (Eq. (22)) by inequality:

∣∣∆2||X||22ANNθ(X/||X||2)
∣∣ ≤ A(θ)∆2||X||22 → 0 as X → 0. (23)

Text S3. Details of the training algorithm

The training dataset is created using four coarse-graining factors, selected to be similar

to those used in Gultekin et al. (2024), and 10 depths (extending Gultekin et al. (2024)),

see Table S1.

ANN model architecture

For offline analysis, we use an ANN, also known as a multilayer perceptron (MLP), with

two hidden layers, 32 neurons each, in a total of 2051 parameters, both for parameteriza-

tions with and without dimensional scaling (see Table S1). For online implementation, the

ANN model is chosen to be smaller (see Table S1): it has only a single hidden layer with

20 neurons, as in Prakash et al. (2022), with a total of 623 trainable parameters. We veri-

fied that reducing the number of neurons for online implementation does not significantly

impact the response in kinetic and potential energy and the time-mean sea surface tem-
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perature in short 5-year simulations in the global ocean model OM4 (Figure S5). Thus,

we keep the smaller ANN for online implementation to bound its computational cost to

within ≈ 10% of the global ocean model runtime.

Training algorithm and boundary conditions

We train the ANN model on data from the full globe, similarly to Gultekin et al. (2024).

The loss function is defined to optimize for the divergence (∇· ) of subfilter fluxes (T)

similarly to Zanna and Bolton (2020) and Srinivasan, Chekroun, and McWilliams (2024).

The mean squared error (MSE) loss is minimized on every 2D snapshot of subfilter forcing

S and normalized by the corresponding l2-norm of S (Agdestein & Sanderse, 2025):

LMSE = ||(S−∇ · T̂) ·m||22/||S ·m||22, (24)

where m is the mask of wet points. The input features (velocity gradients, X) and

predicted subfilter fluxes are set to zero on the land as well: T̂ ≡ m · T̂(m ·X). That is,

we impose zero Neumann boundary condition (Zhang et al., 2024) and free-slip boundary

condition. We found that including the grid points adjacent to the land to the loss function

is essential for ensuring the numerical stability of online runs. Another important design

choice for online numerical stability is performing the ANN inference on the collocated,

rather than on the staggered grid, similarly to Guillaumin and Zanna (2021) and Agdestein

and Sanderse (2025).

The loss function (Eq. (24)) is evaluated and minimized for a total of 16000 two-

dimensional snapshots during training, see Table S1. We do not use any regularizations,

such as weight decay, during the training of ANNs because the size of the dataset is much

bigger relative to the number of trainable parameters. We verified that the offline skill on
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training and testing data is very similar, suggesting that there is no overfitting, and there

is no need for regularization.

Sensitivity to the random seed

The R-squared of the offline predictions of the ANN is almost insensitive to the random

seed used to initialize the training algorithm. In addition, the prediction errors S−∇·T̂ are

highly correlated between different seeds (as in Srinivasan et al. (2024)). We also confirmed

that the kinetic energy is nearly unchanged in online two-layer Double Gyre experiments,

using ANNs generated from different initializations of the training algorithm, similarly

to Zhang et al. (2024). However, there is some sensitivity to the training algorithm

initialization for the mean flow prediction: the response pattern in the mean flow is

similar, but the response magnitude can vary by 50%. The sensitivity of the mean fields

to the random seed is not apparent in the global ocean configuration OM4.

Choice of the filter scale in the training dataset

The filtering operator used is a Gaussian filter implemented in the package GCM-Filters

(Grooms et al., 2021; Loose et al., 2022) with width ∆, chosen in relation to the coarse

grid spacing ∆. The filter-to-grid width ratio parameter (FGR = ∆/∆) represents the

strength of the subfilter parameterization: relatively low value of FGR (∆/∆ = 1) in

the training dataset results in a learned parameterization that has negligible effect in

online simulations. On the other hand, a relatively large value (FGR = 4) results in over-

energized grid-scale features. The value used here (FGR = 3) corresponds to the strongest

parameterization effect without generating grid-scale noise. Note that the optimal FGR

parameter depends on the numerical and physical dissipation schemes present in the
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ocean model, as the ANN subfilter parameterization alone does not produce enough grid-

scale dissipation. For the discussion of how to choose FGR parameter see Perezhogin,

Balakrishna, and Agrawal (2024); Perezhogin, Zhang, Adcroft, Fernandez-Granda, and

Zanna (2024); Perezhogin and Glazunov (2023).

Text S4. Online implementation and numerical stability in MOM6

The trained parameters of the ANN subfilter model are saved to a NetCDF file and

read by the numerical ocean model during initialization. The neural network inference is

implemented using the Fortran module of Sane, Reichl, Adcroft, and Zanna (2023). The

ANN inference takes ≈ 10% of the ocean model runtime, for a neural network with one

hidden layer and 20 neurons. However, the inference can be further accelerated, as we

found that the inference in Python is generally faster than in Fortran.

The implemented ANN parameterization works stably (free of NaNs in prognostic fields)

in idealized Double Gyre and global ocean OM4 configurations, without any tuning, in

part because the biharmonic Smagorinsky model provides the dissipation. In the idealized

configuration NeverWorld2 (NW2, Marques et al. (2022)), however, tuning is required to

improve the numerical stability even when a backscatter parameterization (whether our

ANN or more traditional parametrization) is used together with biharmonic Smagorinsky

model; e.g., Yankovsky, Bachman, Smith, and Zanna (2024). We have modified the

ANN parameterization to achieve stability, without optimizing for online metrics, using

a set of minimal changes. Our tuning includes attenuating the magnitude of the ANN

parameterization in high-strain regions following Perezhogin, Zhang, et al. (2024) and
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allowing the MOM6 dynamical core to truncate velocities if they are too big. Additionally,

at resolution 1/6◦ in NW2, we had to reduce the time stepping interval.
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Table S1. Parameters of the training data and artificial neural network (ANN) model

Category Value

Training Data Parameters
High-resolution data CM2.6 (Griffies et al., 2015), 0.1◦ ocean grid
Diagnosed features σS, σT , ω, S, T
Layer Depths (m) 5, 55, 110, 180, 330, 730, 1500, 2500, 3500, 4500
Horizontal grid type Tripolar
Horizontal extent All globe including polar latitudes
Coarse Grid Spacing, ∆ (nominal) 0.4◦, 0.9◦, 1.2◦, 1.5◦

Coarse Grid Spacing, ∆ (km, 60S◦ − 60N◦) 22-44, 50-100, 67-134, 85-167
Gaussian Filter Width, ∆ 1.2◦, 2.7◦, 3.6◦, 4.5◦; i.e., ∆/∆ = 3
Training / Validation / Test Splitting (years) 181− 188 / 194 / 199− 200
Snapshot Averaging Interval 5 days
Time Seperation Between Snapshots 1 month
Number of 2D Snapshots used for Training 10× 4× 8× 12 = 3840
Number of Training Iterations 16000 (each iteration randomly selects 2D snapshot)

ANN Parameters
Input Size 3× 3
ANN type Multilayer Perceptron (MLP)
ANN used for offline analysis 2 hidden layers, 32 neurons each, 2051 parameters
ANN used in online implementation 1 hidden layer with 20 neurons, 623 parameters
Activation Function ReLU
Note Regularization is not applied during training
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RMSE 0◦E 15◦E 30◦E 45◦E
Control(1/3◦) 51.3 46.8 49.1 36.8
Yankovsky24(1/3◦) 33.5 31.6 29.9 27.4
ZB20-Reynolds(1/3◦) 32.7 25.4 26.1 21.6
ANN(1/3◦) 35.0 24.3 30.9 28.6
Control(1/4◦) 52.1 42.1 40.3 34.6
Yankovsky24(1/4◦) 27.8 23.0 20.7 21.3
ZB20-Reynolds(1/4◦) 26.9 21.0 18.4 18.5
ANN(1/4◦) 29.2 20.0 16.7 19.7
Control(1/6◦) 42.7 30.7 31.8 26.7
Yankovsky24(1/6◦) 26.2 22.3 16.1 16.8
ZB20-Reynolds(1/6◦) 27.7 24.5 18.9 18.4
ANN(1/6◦) 23.5 18.8 13.8 14.6

Table S2. Online results in idealized configuration NeverWorld2 at three coarse resolutions

(1/3◦, 1/4◦ and 1/6◦). The root mean squared errors (RMSE) in 1000-day averaged position

of interfaces over four meridional transects at longitudes 0◦E, 15◦E, 30◦E and 45◦E. RMSE

units are metres. The interfaces for Control and ANN-parameterized runs at resolution 1/4◦ at

longitudes 0◦E and 45◦E are also shown in Figure S3. The error is computed w.r.t. 1/32◦ model.

Yankovsky24 stands for parameterization of Yankovsky et al. (2024), ZB20-Reynolds stands for

Zanna and Bolton (2020) parameterization implemented and modified by Perezhogin, Zhang, et

al. (2024). Parameterizations are not retuned when resolution is changed.
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ACC transport [Sv]
1/32◦ 235.3
Control(1/3◦) 242.7
Yankovsky24(1/3◦) 237.4
ZB20-Reynolds(1/3◦) 230.2
ANN(1/3◦) 241.6
Control(1/4◦) 245.1
Yankovsky24(1/4◦) 229.9
ZB20-Reynolds(1/4◦) 225.4
ANN(1/4◦) 236.9
Control(1/6◦) 243.3
Yankovsky24(1/6◦) 230.4
ZB20-Reynolds(1/6◦) 219.5
ANN(1/4◦) 228.8

Table S3. Online results in idealized configuration NeverWorld2. The ACC transport through

the Drake Passage at 0◦E averaged over 800 days.
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Figure S1. Extension of Figure 1 in the main text with generalization of two ANN parame-

terizations to multiple unseen depths, but seen resolution used for training (0.9◦).

September 18, 2025, 9:21pm



X - 14 :

10◦E 30◦E 50◦E

60◦S

40◦S

20◦S

0◦N

20◦N

40◦N

60◦N
(a)

Diagnosed from 1/32 ◦

10◦E 30◦E 50◦E

(b)
ANN prediction offline (1/4 ◦ )

10◦E 30◦E 50◦E

(c)
ANN prediction online (1/4 ◦ )

100 10 1 10 2 10 3 0 10 3 10 2 10 1 100
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Figure S2. Upscale KE transfer (positive numbers correspond to backscatter) averaged over

800 days and integrated over depth in idealized NeverWorld2 configuration. (a) Diagnosed from

high-resolution (1/32◦) simulation by filtering and coarsegraining, (b) and (c) predicted by the

ANN offline and online, respectively, at coarse resolution 1/4◦. The ANN was trained on global

ocean data and thus generalizes well to a new configuration as seen in the accurate prediction

of KE transfer offline. Prediction offline means that filtered and coarsegrained snapshots of the

high-resolution model were given as inputs to the ANN. Slight degradation of prediction online is

related to the difference in magnitude of small-scale velocity gradients and large-scale circulation

patterns in the coarse ocean model.
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Figure S3. Online results in idealized configuration NeverWorld2. The 1000-days averaged

isopycnal interfaces in the meridional transect of Drake Passage (Longitude 0◦E, left column) and

at Longitude 45◦E. The blue dashed lines show the position of interfaces in the coarse-resolution

(1/4◦) experiment, and the gray lines show the interfaces of the high-resolution model 1/32◦.

The root mean squared errors (RMSE) between coarse and high-resolution models are provided.
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SST

SSS

Control — WOA18     ANN — Control                    Chang23 — Control     

     Chang23 — Control         ANN — Control               Control — WOA18

Figure S4. Online results in the global ocean-ice model OM4 (Adcroft et al., 2019), North

Atlantic region. Comparison of the ANN parameterization to a baseline parameterization tested

in Chang et al. (2023). We consider biases in sea surface temperature (SST), sea surface salinity

(SSS). Model output is averaged over years 1981-2007. The observational data for SST and SSS

is given by the World Ocean Atlas 2018 (WOA18, Locarnini et al. (2018)). Root mean square

errors (RMSEs) between simulations and observations are provided.
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Online metrics in OM4

Offline metrics in CM2.6

Figure S5. Upper block: Offline performance of the mesoscale eddy parameterizations on

CM2.6 data. Three versions of the ANN parameterization with dimensional scaling are shown,

which are different in the number of neurons used or the size of the spatial stencil. Existing

parameterizations, equation-discovery model (ZB20, Zanna and Bolton (2020)) and anti-viscosity

model (Chang et al., 2023), are shown for comparison. Lower block: Kinetic energy (KE) and

available potential energy (APE) in short 5-year OM4 parameterized simulations.
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Figure S6. (Upper row) Offline kinetic energy (KE) transfer spectrum, where T (k) =

2πkRe(F(u)∗F(S)), and F is the 2D Fourier transform, Re is the real part, and ∗ is the complex

conjugate. (Lower row) power spectrum of subfilter forcing 2πkF(S)∗F(S). Spectra are com-

puted in the North Atlantic region (25 − 45◦N)×(60 − 40◦W) and at depth 5m. Rd = 22.6km

is the Rossby deformation radius in this region. Results are shown for an ANN used in online

simulations.

We can identify two effects of the coarsening of the resolution on the diagnosed and predicted

eddy fluxes. First, the diagnosed interscale energy transfer vanishes once the Rossby deforma-

tion radius becomes unresolved. This can be explained by the blocking of the inverse energy

cascade on the scales much larger than the forcing scale (deformation radius). Second, the ANN

parameterization predicts even smaller kinetic energy transfer at these coarse resolutions (≈ 1◦).

It is a subject of future studies whether we should attempt to achieve more accurate predictions at

these resolutions with improved architecture of the ANN or consider alternative parameterization

approaches, such as parameterizing buoyancy fluxes instead, Balwada et al. (2025).
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