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Abstract14

Data-driven methods have become popular to parameterize the effects of mesoscale ed-15

dies in ocean models. However, they perform poorly in generalization tasks and may re-16

quire retuning if the grid resolution or ocean configuration changes. We address the gen-17

eralization problem by enforcing physics constraints on a neural network parameteriza-18

tion of mesoscale eddy fluxes. We found that the local scaling of input and output fea-19

tures helps to generalize to unseen grid resolutions and depths offline in the global ocean.20

The scaling is based on dimensional analysis and incorporates grid spacing as a length21

scale. We formulate our findings as a general algorithm that can be used to enforce data-22

driven parameterizations with dimensional scaling. The new parameterization improves23

the representation of kinetic and potential energy in online simulations with idealized24

and global ocean models. Comparison to baseline parameterizations and impact on global25

ocean biases are discussed.26

Plain Language Summary27

Ocean models can’t directly simulate eddies that are smaller than the resolution28

of the computational grid. The effect of these eddies is represented by parameterizations.29

Machine learning offers a new way to build parameterizations directly from data, how-30

ever, such parameterizations may fail when tested in new, unseen scenarios. Here, we31

leverage physics constraints to mitigate this, generalization, problem. Specifically, we found32

that method of dimensional analysis can be used to constrain data-driven parameter-33

izations to enhance their accuracy in new scenarios without the need for retraining. New34

parameterization is tested in a realistic ocean model and brings us closer to robust, data-35

driven methods for ocean and climate models.36

1 Introduction37

Numerical ocean models rely on parameterizations to represent the effects of phys-38

ical processes smaller than the model grid spacing, which are unresolved (Fox-Kemper39

et al., 2019; Hewitt et al., 2020; Christensen & Zanna, 2022). Recently, there has been40

a growing interest in applying machine learning methods to parameterize these subgrid41

physics in ocean models (Bolton & Zanna, 2019; Zanna & Bolton, 2020; Guillaumin &42

Zanna, 2021; Zhang et al., 2023; Sane et al., 2023; Yan et al., 2024; Perezhogin, Zhang,43

et al., 2024; Maddison, 2024). However, developing data-driven parameterizations for ocean44

models is still in its early stages, and their application is often limited to idealized con-45

figurations. Deploying data-driven parameterizations in the global ocean presents sev-46

eral challenges, one of which is addressed in this study – the problem of generalization47

to unseen scenarios.48

Data-driven parameterizations rely heavily on sets of training data, and their suc-49

cessful implementation often requires tuning when applied to a new grid resolution (Zhang50

et al., 2023), flow regime (Ross et al., 2023), model configuration (Perezhogin, Zhang,51

et al., 2024), depth, or geographical region (Gultekin et al., 2024). However, in practice,52

it would be desirable to have a single parameterization that performs effectively across53

a variety of scenarios without requiring retuning. The ability of a data-driven model to54

work on new (testing) data, which is distinct from the training data, is measured by the55

generalization error (Bishop & Nasrabadi, 2006; Hastie et al., 2009). Data-driven meth-56

ods work best when the testing data is drawn from the same distribution as the train-57

ing data. However, in geophysical applications, the distribution of physical variables can58

vary vastly across different scenarios—a phenomenon referred to as a distribution shift59

(Beucler et al., 2024; Gultekin et al., 2024). In this case, domain knowledge and physics60

constraints can be leveraged to mitigate the generalization error of data-driven models61

(Kashinath et al., 2021).62
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In this work, we demonstrate how physics constraints can be leveraged to enhance63

the generalization of an Artificial Neural Network (ANN) parameterization of the ocean64

mesoscale eddy fluxes. Following Beucler et al. (2024), we rescale features of the ANN65

to minimize the distribution shift. To identify a suitable normalization technique for eddy66

fluxes, we apply dimensional analysis and Buckingham (1914)’s Pi theorem. Specifically,67

we introduce a local dimensional scaling constructed from the grid spacing and veloc-68

ity gradients (Prakash et al., 2022). The local scaling improves offline generalization of69

the ANN parameterization to unseen grid resolutions and depths, as found in the global70

ocean dataset CM2.6 (Griffies et al., 2015). Our findings are formulated as a general al-71

gorithm that can be used to incorporate the dimensional scaling in future applications.72

Additional physics constraints for the ANN parameterization are enforced following Guan73

et al. (2022) and Srinivasan et al. (2024). We present an online evaluation of the new74

ANN parameterization in the GFDL MOM6 ocean model (Adcroft et al., 2019) in ide-75

alized and global configurations.76

2 A Method to Constrain Neural Network with Dimensional Scaling77

Here we introduce the concept of physical dimensionality and demonstrate how it78

can be used to constrain data-driven parameterizations. We start with a trivial exam-79

ple, followed by a general algorithm. Finally, we draw connections to existing approaches.80

2.1 Trivial Example81

Consider the case where a scalar momentum flux T (units of m2s−2) can be pre-82

dicted using a length scale ∆ (units of m) and inverse time scale X (units of s−1):83

T = f(∆, X). (1)

Eq. (1) must remain invariant under rescaling the units of time and length, that is for84

any α, β > 0, the equality must hold: f(α∆, βX) = α2β2f(∆, X). However, the unit85

invariance can be violated when f is parameterized by neural networks. One way to en-86

force it is by leveraging Buckingham (1914)’s Pi theorem, which states that the dimen-87

sional equation (such as Eq. (1)) can be rewritten in non-dimensional form. Specifically,88

for a set of three dimensional variables (T , ∆, X) with two independent dimensions (length89

and time), there is only one (three minus two) non-dimensional variable (π1 = T/(∆2X2)).90

Thus, Eq. (1) transforms to π1 = const, or equivalently:91

T = ∆2X2θ, (2)

where θ can be interpreted as a non-dimensional Smagorinsky (1963) coefficient. A data-92

driven parameterization in the form of Eq. (2) with a trainable parameter θ, which is93

constant, follows the dimensional scaling as a hard constraint, in contrast to Eq. (1), which94

does not guarantee dimensional consistency. Eq. (2) promotes generalization as it ex-95

plicitly accounts for the change in the magnitude of independent variables (∆ and X),96

constraining the learnable part of the mapping (θ) to be on the order of unity.97

2.2 General Algorithm98

Extending the example above, we suggest an algorithm to enforce dimensional scal-99

ing in ANN parameterizations by preprocessing input and output features:100

1. Identify the input features that contribute significantly to the accurate prediction101

of the output features;102

2. Construct non-dimensional input and output features from a combined set of iden-103

tified input and output features;104

3. Verify that a traditional known parameterization is a special case of the constructed105

non-dimensional mapping.106
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Step 1 follows standard dimensional analysis textbooks (Bridgman, 1922; Baren-107

blatt, 1996). Specifically, a relevant set of input features can be identified by physical108

intuition or through ablation studies by evaluating the gain in offline performance from109

including additional dimensional features in the input set. Constructing non-dimensional110

features is a common approach in physics-constrained data-driven parameterizations (Ling111

et al., 2016; Schneider et al., 2024). However, the normalization of input features is of-112

ten considered separately from the normalization of output features (Xie et al., 2020; Kang113

et al., 2023; Beucler et al., 2024; Christopoulos et al., 2024), unlike our proposed method114

(step 2 above). Additionally, the emphasis in these works is often placed on identifying115

normalization factors that minimize the distribution shift, while we suggest starting with116

identifying features responsible for the prediction (step 1). Finally, traditional param-117

eterizations are often used to propose efficient normalization factors (Xie et al., 2020; Kang118

et al., 2023; Connolly et al., 2025), while we instead advocate for having traditional pa-119

rameterizations as a special case (step 3, Prakash et al. (2022, 2024)).120

3 Physics Constraints for Ocean Mesoscale Parameterization121

Our goal is to predict the subfilter momentum fluxes of mesoscale eddies using an122

Artificial Neural Network (ANN) parameterization, see schematic in Figure 1(a). Var-123

ious physical invariances were imposed to promote generalization.124

3.1 Learning Subfilter Fluxes125

We consider the acceleration produced by subfilter ocean mesoscale eddies (subfilter126

forcing, Bolton & Zanna, 2019):127

∂tu = S = (u · ∇)u− (u · ∇)u, (3)

where u = (u, v) is the horizontal ocean velocity, ∇ = (∂x, ∂y) is the horizontal gra-128

dient, and (·) is the horizontal filter. The subfilter forcing can be approximated (Loose,129

Marques, et al., 2023) as a divergence of the momentum flux:130

S ≈ ∇ ·T (4)

where131

T =

(
Txx Txy

Tyx Tyy

)
=

(
uu− uu u v − uv
u v − uv v v − vv

)
. (5)

We predict the three components of T, namely Txx, Txy, Tyy, rather than S directly, sim-132

ilarly to Zanna and Bolton (2020) (ZB20 hereafter) to impose momentum conservation133

as a hard constraint. We enforce symmetry of the tensor T by predicting Txy and shar-134

ing its prediction with Tyx, which guarantees angular momentum conservation (Griffies,135

2018, Section 17.3.3). We also promote rotational and reflection invariances via data aug-136

mentation (Guan et al., 2022), independently rotating each training snapshot by 90◦ and137

reflecting it along the x and y axes, resulting in 8 = 23 augmented snapshots per orig-138

inal one.139

We learn the components of T by minimizing the mean squared error (MSE) loss140

function:141

LMSE = ||(S−∇ · T̂) ·m||22 / ||S ·m||22, (6)

where m is the mask of wet points and T̂ is the neural network prediction of the sub-142

filter flux as discussed below. See SI for further details.143

3.2 Input Features144

Here, we identify the input features relevant for the prediction of momentum fluxes145

(step 1 of the algorithm presented in Section 2.2).146
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(b)

(c)

(d)

ANN schematic

Snapshots of predictions

Generalization to various resolutions/depths

X =
[σS] ↕ 9

[σT] ↕ 9
[ω ] ↕ 9

ANNθ ∇ ⋅ ̂T

(a)

Figure 1. (a) Artificial neural network (ANN) parameterization predicting the divergence of

subfilter fluxes given the velocity gradients on the horizontal stencil of 3×3 points. (b) Snapshots

of predictions by two ANNs: with local dimensional scaling (Eq. (11), center column) or with

fixed normalization coefficients (Eq. (10), right column) at the resolution (0.9◦) and depth (5m)

used for training (testing data is separated by 10 years). (c) Prediction at the unseen resolution

(0.4◦) and the same depth (5m). (d) Coefficient of determination (R2) in prediction of subfilter

forcing for various resolutions and depths, different from that used for training (0.9◦, 5m). The

R2 is averaged over 2 years of held-out data and excludes 2 grid points adjacent to the coastline,

where green and orange boxes correspond to panels (b) and (c), respectively.
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Following ZB20, we consider the components of the strain-rate tensor and vortic-147

ity as input features:148

σS = ∂yu+ ∂xv – shearing strain,

σT = ∂xu− ∂yv – horizontal tension/stretch,

ω = ∂xv − ∂yu – relative vorticity.

(7)

These input features exclude explicit dependence on the velocity, guaranteeing Galilean149

invariance of the parameterization (Srinivasan et al., 2024; Pope, 1975; Lund & Novikov,150

1993; Ling et al., 2016). When using the input features (Eq. (7)) pointwise, the result-151

ing ANN parameterization highly correlates with the ZB20 equation-discovery model.152

Thus, we decided to include the non-local contribution of these features (Srinivasan et153

al., 2024). To do so, the input vector to the ANN consists of velocity gradients, each de-154

fined on a 3 × 3 horizontal stencil and flattened into a vector of length 9 (denoted as155

[·] ↕9):156

X =

[σS ] ↕9
[σT ] ↕9
[ω] ↕9

 ∈ R27. (8)

Including information about velocity gradients from the closest neighboring points is a157

common approach in subgrid modeling (Maulik & San, 2017; Maulik et al., 2019; Pawar158

et al., 2020; Wang et al., 2021, 2022; Gultekin et al., 2024).159

To facilitate generalization across different resolutions (scale-aware or grid-aware160

parameterization, Bachman et al., 2017), we account for the local grid spacing of the coarse161

resolution model ∆ =
√
∆x∆y, resulting in the following functional form of the param-162

eterization (Lund & Novikov, 1993; Li et al., 2025):163

T ≈ T̂(X,∆). (9)

Accounting for grid spacing is physically justified as velocity gradients and momentum164

fluxes differ in dimensionality and require a length scale to be invoked.165

3.3 Neural Network Parameterizations166

We consider a baseline data-driven parameterization of eddy fluxes with fixed nor-167

malization coefficients, following the form of Eq. (9):168

T̂(X,∆) = aTANNθ(X/aX,∆/a∆), (10)

where ANNθ is the neural network with trainable parameters θ, coefficients aT =10−2m2s−2
169

and aX = 10−6s−1 approximate the standard deviations of eddy fluxes and velocity gra-170

dients in our dataset, and a∆ = 50km. Using fixed normalization coefficients in param-171

eterizations similar to Eq. (10) is a common practice (Srinivasan et al., 2024). Below,172

we contrast this approach to a normalization that follows solely from dimensional anal-173

ysis presented in Section 2.2.174

A combined set of input and output features (T, X, ∆) is used to construct non-175

dimensional input (X/||X||2) and output (T/(∆||X||2)2) features (step 2 in Section 2.2),176

where ||X||2 =
√∑

i X
2
i . This normalization of features is local, that is computed sep-177

arately for each grid point. By designing the ANN to operate on non-dimensional vari-178

ables, we propose a parameterization with the local dimensional scaling (Reissmann et179

al., 2021; Prakash et al., 2022):180

T̂(X,∆) = ∆2||X||22ANNθ(X/||X||2). (11)

According to the Buckingham (1914)’s Pi theorem, there is freedom in constructing non-181

dimensional variables. We opt to use the non-dimensional vector X/||X||2 to constrain182
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the range of its components between −1 and 1, thereby reducing the distribution shift183

in ANN inputs.184

Following step 3 in Section 2.2, we show that the model form (Eq. (11)) admits ZB20,185

Smagorinsky, biharmonic Smagorinsky, and Leith (1996) parameterizations as special186

cases, with well-behaved functional representations (see Text S1 in SI for details). Fur-187

thermore, Eq. (11) guarantees that the predicted fluxes vanish (T̂ → 0) as velocity gra-188

dients diminish (X → 0), similarly to known parameterizations, see Text S2 in SI. We189

experimentally verified that the spatial variability of the normalization factor (||X||2)190

in Eq. (11) does not amplify the parameterization errors (S−∇· T̂) compared to Eq.191

(10).192

4 Experimental setups193

4.1 Training dataset194

The training dataset is created using the climate model CM2.6 (Griffies et al., 2015),195

which has a nominal ocean resolution of 0.1◦. Velocity gradients (Eq. (7)), used as in-196

put features, and subfilter forcing (S, Eq. (3)), used as output, are diagnosed using hor-197

izontal filtering followed by coarse-graining, which avoids the inclusion of discretization198

errors (Guillaumin & Zanna, 2021; Christensen & Zanna, 2022; Agdestein & Sanderse,199

2025). The filtering is applied by sliding a Gaussian kernel with a filter width three times200

the width of the target coarse grid box, using Grooms et al. (2021); Loose et al. (2022).201

Subsequent coarse-graining is done by averaging over the fine grid boxes contained within202

each coarse grid box. The filtering and coarse-graining are done for 4 coarse resolutions203

and 10 depth levels (Figure 1(d) and Table S1 in SI).204

4.2 ANN architecture205

For the offline analysis of parameterizations (Eqs. (10), (11)), we found that an ANN206

with two hidden layers, 32 neurons each, was sufficiently large to effectively learn from207

the input features. See Text S3 in SI for details.208

4.3 Online implementation209

We implement the ANN mesoscale eddy parameterization (Eq. (11)) in two con-210

siderably different configurations of the GFDL MOM6 ocean model (Adcroft et al., 2019)211

at eddy-permitting (1/4◦) resolution. To ensure that ANN inference remains computa-212

tionally efficient, we retrain a smaller network with only one hidden layer and 20 neu-213

rons, which keeps the ANN inference time below 10% of the ocean model runtime (Text214

S3 in SI for details). While our goal was to implement the ANN parameterization with-215

out further modifications, minor adjustments were necessary for numerical stability, see216

Text S4 in the SI.217

The idealized ocean configuration, NeverWorld2 (NW2, Marques et al. (2022)), in-218

cludes 15 stacked shallow water layers, featuring a single basin ocean with a reentrant219

channel. The circulation is driven by a steady wind forcing, giving rise to a circumpo-220

lar current and gyres. Coarse simulations are initialized from rest, and run for 30000 days,221

similar to Marques et al. (2022) and Perezhogin, Zhang, et al. (2024).222

The second configuration, OM4 (Adcroft et al., 2019), is a coupled ocean-sea-ice223

model forced at the air-sea interface by prescribing the atmosphere state according to224

the CORE-II interannual forcing (IAF) protocol (Large & Yeager, 2009). The simula-225

tions span 60 years (1948-2007) and were initialized with a state of the Control model226

after 270 years of spin-up.227
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The biharmonic Smagorinsky scheme for gridscale dissipation is used with viscos-228

ity coefficient ν4 = 0.06
√
σ2
S + σ2

T∆
4 (Adcroft et al., 2019), applied in control and pa-229

rameterized (mixed modeling, Meneveau and Katz (2000)) simulations.230

5 Results231

5.1 Offline generalization232

Our primary goal is to demonstrate that the local dimensional scaling promotes233

the generalization of the eddy parameterization to unseen grid resolutions and depths.234

Limited generalization in such scenarios has been reported for previous machine-learning235

models of mesoscale eddies (Zhang et al., 2023; Gultekin et al., 2024; Ross et al., 2023)236

and traditional physics-based parameterizations (Yankovsky et al., 2024).237

We compare two ANNs: one incorporating local dimensional scaling (Eq. (11)) and238

a baseline ANN with fixed normalization coefficients (Eq. (10)). To explore generaliza-239

tion, we let the ANNs learn based solely on data from one combination of depth (5m)240

and coarse grid resolution (0.9◦) during training. The local grid spacing varies accord-241

ing to the tripolar grid used in the ocean component of the CM2.6 climate model. In par-242

ticular, at the nominal resolution of 0.9◦, the coarse grid spacing ∆ =
√
∆x∆y is in a243

range from 50km to 100km for non-polar latitudes (60S◦−60N◦). Spatially varying grid244

spacing provides essential information for effective learning by the baseline ANN. The245

offline evaluation of ANNs on held-out data similar to that used for training is shown246

in Figure 1(b). Both ANNs exhibit high and equal pattern correlation (0.90) and R2 (0.81)247

in the prediction of the norm of subfilter forcing.248

We now consider generalization to a different grid resolution, which is finer (0.4◦)249

compared to that used for training (0.9◦), see Figure 1(c). The range of grid spacings250

in this case is beyond the range seen by a baseline ANN during training, resulting in a251

distribution shift between the testing and training data. The baseline ANN parameter-252

ization (Eq. (10)) predicts the norm of subfilter forcing at a new grid resolution with a253

reasonably high pattern correlation (0.85). However, the magnitude of the prediction is254

too large, resulting in a low R2 (−2.71). Instead, the ANN with dimensional scaling (Eq.255

(11)) offers improved generalization capability. The proposed ANN naturally accounts256

for the reduction of the grid spacing and reduces the magnitude of the prediction, re-257

sulting in high pattern correlation (0.94) and R2 (0.87) metrics (Figure 1(c)).258

The generalization to both finer and coarser grids, and different depths, is summa-259

rized in Figure 1(d). At coarser grid spacings (1.2◦, 1.5◦) compared to that used for train-260

ing (0.9◦), the local dimensional scaling again helps to achieve higher R2 by increasing261

the magnitude of the prediction.262

In the deep layers, the subfilter forcing and velocity gradients are approximately263

one order of magnitude smaller than near the surface. Thus, a baseline ANN, trained264

on much larger values near the surface (such as here, at depth 5m), can lead to inaccu-265

rate predictions at depth (Figure S1 in SI). However, the local dimensional scaling ef-266

fectively rescales the input features, thereby improving generalization to deep, unseen267

layers, as summarized in Figure 1(d).268

The major reason why baseline ANN has a poor skill at unseen resolutions and depths269

is the lack of training data. We verified that the generalization of the baseline ANN to270

various resolutions and depths can be restored if these resolutions and depths are included271

in the training dataset. Incorporating local dimensional scaling as done in this work, there-272

fore, requires less training data and improves out-of-distribution generalization.273
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Figure 2. Effect of increasing resolution in idealized configuration NeverWorld2 (Marques et

al., 2022) in the upper row, where 1/32◦ represents filtered and coarse-grained high-resolution

simulation. Impact of the ANN parameterization with local dimensional scaling (Eq. (11)) on-

line at resolution 1/4◦ in the lower row. We consider three depth-integrated metrics: difference

(denoted as ∆) in Eddy Kinetic Energy (EKE) (left column); diagnosed and predicted online

upscale kinetic energy transfer (center column) (positive values represent backscatter); difference

in Available Potential Energy (APE) (right column). All metrics are averaged over 160 snapshots

corresponding to the last 800 days of the simulations.
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5.2 Online evaluation in the MOM6 ocean model274

We use all available depths and grid resolutions shown in Figure 1(d) for training275

to make the implemented ANN parameterization (Eq. (11)) less tied to any specific res-276

olution or depth. The retrained, smaller ANN (see Section 4.3) exhibits a slightly lower277

offline skill (R2) than the version described earlier, on average, by 0.1 (Figure S5 in SI).278

5.2.1 Idealized configuration NeverWorld2279

We first consider an idealized adiabatic ocean configuration NW2, which generates280

various circulation patterns similar to the global ocean but allows us to isolate the ef-281

fect of mesoscale eddies. Our goal is to show that the impact of the ANN parameteri-282

zation on the flow is similar to that of increasing the horizontal resolution.283

Mesoscale eddies extract available potential energy, APE= ρ
2

∑
k g

′
k(η

2
k−(ηrefk )2),284

from the mean flow, which is then converted into the eddy kinetic energy, EKE= ρ
2 (|u2|

t
−285

|ut|2) (Salmon, 1980). Here, (·)
t
is the temporal averaging, ρ is the density, g′k is the re-286

duced gravity of k-th isopycnal interface, ηk is the interface height and ηrefk is the state287

of rest with flat isopycnals. At an eddy-permitting resolution (1/4◦), this energy path-288

way is partially unresolved (Jansen & Held, 2014; Mana & Zanna, 2014; Juricke et al.,289

2019; Loose, Bachman, et al., 2023). As a result, the coarse ocean model has too low EKE290

and too large APE when compared to the filtered and coarse-grained high-resolution sim-291

ulation, denoted as 1/32◦ (Figure 2(a,c)). However, Figure 2(a) suggests that the miss-292

ing eddies can be nominally resolved on the coarse grid. Traditional backscatter param-293

eterizations are designed to directly reduce this EKE bias by energizing the resolved ed-294

dies, resulting in additional extraction of APE (Jansen & Held, 2014; Yankovsky et al.,295

2024).296

Eddy backscatter is diagnosed when the kinetic energy transfer produced by the297

subfilter forcing (Eq. (3)) is predominantly positive (upscale), as shown in Figure 2(b).298

We verified that our ANN parameterization accurately predicts the eddy backscatter of-299

fline (Figure S2 in SI), suggesting reasonable generalization capabilities of our approach.300

In Figure 2(e), we show a more challenging task – the prediction of the eddy backscat-301

ter online once the ANN is coupled to the coarse ocean model. The online prediction of302

eddy backscatter grossly resembles the diagnosed data shown in Figure 2(b), although303

there are slight differences caused by the difference in distributions of input features.304

The kinetic energy injection from the ANN parameterization leads to an increase305

in EKE that aligns with the high-resolution data, in particular in the ACC (Antarctic306

circumpolar current) region (40◦S−60◦S), near the western boundaries, and in the sub-307

tropics (20◦S−20◦N), see Figure 2(d). However, the EKE increase in western bound-308

ary current extension (40◦N, 10◦E−20◦E) and subpolar gyre (50◦N−70◦N) is smaller309

than expected from the high-resolution simulation. The spatial pattern of APE reduc-310

tion in the parameterized simulation is close to that produced by increasing horizontal311

resolution (Figure 2(f)). The APE is predominantly reduced in the Southern Ocean and312

ACC regions (40◦S−70◦S), followed by APE reduction in gyres (20◦N−60◦N, 20◦S−313

40◦S). Local patches of APE increase in the higher resolution model (Figure 2(c)) cor-314

respond to enhanced horizontal recirculation and are reproduced by the ANN param-315

eterization, but less accurately compared to the diagnosed APE reduction.316

Consequences of APE reduction include flattening of isopycnals and improving the317

structure of isopycnal interfaces across multiple cross-sections (Figure S3 in SI), along318

with a weakening of ACC transport through the Drake Passage (Table S3 in SI).319
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Figure 3. Online evaluation of the ANN parameterization in the global ocean-ice model OM4

(Adcroft et al., 2019) at eddy-permitting resolution (1/4◦). The following depth-integrated di-

agnostics are averaged over one year (2003): (a) upscale kinetic energy transfer predicted by

the ANN parameterization online, (b) difference in Eddy kinetic energy (EKE), (c) difference in

Available potential energy (APE). The integrated percentage change in EKE and APE relative to

the control simulation is shown for five ocean basins.

5.2.2 Global ocean-sea-ice model OM4320

We next evaluate the ANN parameterization in the global ocean model OM4. Un-321

like in the idealized configuration, the interaction of many physical processes in driving322

the circulation in the global ocean model impede our ability to directly isolate the ef-323
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fect of mesoscale eddies (Ferrari & Wunsch, 2009; Lévy et al., 2010). Building on the dy-324

namical expectations established in the idealized NW2 configuration, our goal is to as-325

sess whether the global ocean model exhibits similar response patterns to the eddy pa-326

rameterization.327

The prediction of the kinetic energy injection by the ANN parameterization on-328

line is shown in Figure 3(a). Similarly to the idealized configuration, the kinetic energy329

is injected in the subtropical gyres, near the western boundaries, and occasionally in the330

ACC region. The energy injection is accompanied by an increase of the EKE in the same331

locations, see Figure 3(b). However, compared to the pattern found in an idealized con-332

figuration, the EKE decrease appears more frequently: along topographic features in the333

subpolar gyres of the North Atlantic and North Pacific oceans, and occasionally in the334

ACC region. The decrease of EKE in these regions is due to a shift or weakening of the335

mean currents, potentially as a result of the removal of kinetic energy by the ANN pa-336

rameterization along the lateral boundaries, changes in deep water formation, and/or337

changes in global overturning circulation. The complexity of the model prohibits us from338

identifying a single mechanism.339

Similarly to the idealized configuration, APE is primarily reduced in the South-340

ern Ocean (−12%), with minor APE reductions observed in the Subpolar Gyres of the341

North Atlantic and North Pacific oceans (Figure 3(c)). APE is additionally reduced in342

the Arctic Ocean despite the lack of increased eddy activity in this region. However, its343

relative change is moderately small (−2%).344

We assessed whether the offline performance of the ANN parameterization corre-345

lates with the online results (Figure S5 in SI). We found that using spatially non-local346

features on a 3×3 stencil, as in this study, is important for achieving higher offline skill347

in CM2.6 and improved energetics in OM4 compared to a pointwise ANN parameter-348

ization. However, increasing the number of neurons, which also contributes to the offline349

skill, has a smaller impact on the energetics.350

We note that the evaluation presented in this section is qualitative and can be strength-351

ened by comparing the parameterized global ocean model to filtered and coarse-grained352

higher-resolution simulations. Such evaluation can be performed in future studies by im-353

plementing the proposed parameterization in the hierarchy of GFDL climate models, CM4X,354

which differ in the horizontal resolution of the ocean component (Griffies et al., 2024).355

5.2.3 Comparison to an anti-viscosity parameterization356

We confront our ANN parameterization to a traditional anti-viscosity parameter-357

ization representing mesoscale eddy effects (Jansen et al., 2015) and already tested in358

OM4 by Chang et al. (2023). Repeating their analysis, we found that both ANN and anti-359

viscosity parameterizations reduce the regional biases in the Gulf Stream region, see Fig-360

ure S4 in SI for sea surface temperature and salinity biases. The response in other global361

ocean circulation metrics is remarkably similar for both parameterizations as well (Fig-362

ure 4). Specifically, both parameterizations increase the globally integrated kinetic en-363

ergy by roughly the same percentage and reduce the APE by nearly the same percent-364

age. The restratification effect of mesoscale eddies leads to the reduction of the globally-365

averaged potential temperature (Griffies et al., 2015; Adcroft et al., 2019). As previously366

discussed, the transport through the Drake Passage is reduced in both parametrized sim-367

ulations, see also Grooms et al. (2024). Unlike in Chang et al. (2023), both parameter-368

izations weaken the Atlantic meridional circulation (AMOC). This suggests that the AMOC369

response depends on the ocean model state, perhaps to a greater extent than the details370

of mesoscale eddy parameterizations. The response in some global metrics (ACC, AMOC,371

globally-averaged potential temperature) does not appear to project onto the existing372

ocean model biases. That is, both parameterized ocean simulations are less consistent373

with the observational data than the control simulation (Figure 4). We note that our374
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Figure 4. Comparison of the ANN parameterization to the negative viscosity backscatter

parameterization (Chang et al., 2023) in the global ocean-ice model OM4. Kinetic energy (KE)

and Available potential energy (APE) are integrated globally. Potential temperature is averaged

globally. ACC transport is computed at the Drake Passage section at 70◦W, and AMOC is com-

puted as the maximum over depth streamfunction at 26.5◦N. Model output is averaged over the

years 1981-2007. Observational data for potential temperature is given by World Ocean Atlas

2018 (WOA18, Locarnini et al. (2018)), for ACC transport with error bar is given by cDrake

(Donohue et al., 2016), and for AMOC is given by RAPID (Cunningham et al., 2007) averaged

over 2004-2021 years with error bar showing interannual standard deviation.

goal was to improve the representation of mesoscale eddy processes. Bias reduction is375

not guaranteed due to compensating model errors from other parameterizations and re-376

mains an important direction for future work. A full recalibration of the ocean model377

may be necessary, particularly for physical processes competing with mesoscale eddies378

in determining average potential temperature and the strength of the ACC and AMOC.379

6 Discussion380

We address the generalization issue of ANN parameterizations of mesoscale eddies381

by embedding physics constraints into the inputs, outputs, and parametrization itself.382

The Buckingham (1914)’s Pi-theorem and dimensional analysis are invoked to obtain lo-383

cal normalization coefficients. The ANN parameterization with local dimensional scal-384

ing significantly outperforms the ANN with fixed normalization coefficients offline, demon-385

strating superior generalization to unseen grid resolutions and depths in the global ocean386

data CM2.6. A general algorithm for constructing dimensional scaling, which can be ap-387

plied to other neural-network parameterizations, is presented.388

The proposed ANN parameterization with dimensional scaling is successfully tested389

online in the GFDL MOM6 ocean model. It accurately predicts upscale kinetic energy390

transfer, despite many challenges presented by online implementation. The parameter-391

ization improves the energy pathways by energizing the resolved eddies and reducing APE,392

consistent with the expected restratification effects of mesoscale eddies. These improve-393

ments hold across idealized (NW2) and global ocean (OM4) configurations, with the most394

pronounced APE reduction occurring in the Southern Ocean. The ANN achieves com-395

parable online performance to an existing backscatter parameterization (Jansen et al.,396
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2015; Chang et al., 2023) in OM4, and does not require significant retuning between ide-397

alized and global setups.398

We demonstrate the improved or similar performance of the ANN parameteriza-399

tion in NW2 compared to existing backscatter schemes (Yankovsky et al., 2024; Perezhogin,400

Zhang, et al., 2024) across different resolutions (1/3◦−1/6◦, see Table S2 in SI). At 1/2◦,401

however, the ANN offers no clear improvement compared to the control simulation, likely402

due to less resolved eddies and stronger viscosity. At coarser resolutions (∼ 1◦), the sub-403

filter momentum fluxes vanish as the Rossby radius is unresolved (Figure S6 in SI). At404

such coarse resolutions, combining the ANN with bulk parameterizations or online learn-405

ing approaches may help (Maddison, 2024; Shankar et al., 2025), along with parameter-406

izations explicitly extracting APE (Bachman, 2019; Jansen et al., 2019; Grooms et al.,407

2024; Perezhogin, Balakrishna, & Agrawal, 2024; Balwada et al., 2025).408

Additional work is needed to enhance data-driven parameterizations beyond the409

performance of traditional parameterizations in realistic global configurations. Both pa-410

rameterization approaches exhibit substantial departures from observations and contribute411

comparably to persistent model biases. This highlights the potential for improving pa-412

rameterization schemes, evaluation metrics, and model calibration in ocean modeling.413

Looking ahead, the generalization issue addressed in this study has immediate implica-414

tions for climate models, where parameterizations must remain reliable under changing415

conditions.416

Open Research Section417

The training algorithm, plots, ANN weights, implemented parameterization and418

MOM6 setups are available at Perezhogin (2025). The training dataset, offline skill, and419

simulation data are available at Perezhogin et al. (2025). For high-resolution NW2 sim-420

ulation data, see Marques et al. (2022). Observational products can be found: WOA18421

(Garcia et al., 2019) and RAPID (Moat et al., 2025).422
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Text S1. Known parameterizations as a special case of dimensional scaling

Here, we show that enforcing the dimensional scaling constraint to the ANN parame-

terization is not too restrictive and admits multiple known parameterizations as a special

case with continuous functional representations (see Prakash, Jansen, and Evans (2022)

for discussion). We also show that these functional representations do not depend on the

normalization factor (||X||22) explicitly. This suggests that the choice of the normalization

factor primarily affects the range of inputs to the neural network, but not the function to

be learnt.

We denote the components of the predicted momentum fluxes as follows:

T̂(X,∆) = ∆2||X||22ANNθ(X/||X||2) ≡ (1)

∆2||X||22
(
ANNxx

θ (x) ANNxy
θ (x)

ANNxy
θ (x) ANNyy

θ (x)

)
, (2)

where the vector of input features is

X =

[σS] ↕9
[σT ] ↕9
[ω] ↕9

 ∈ R27 (3)

and x = X/||X||2.

Smagorinsky parameterization

We first consider a Smagorinsky (1963) subgrid parameterization:

T̂ = CS∆
2
√

σ2
S + σ2

T

(
σT σS

σS −σT

)
. (4)

This subgrid model can be given in the form of Eq. (2) if ANN parameterizes the following

functions:

ANNxx
θ (x) = CSx14

√
x2
5 + x2

14 (5)
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ANNyy
θ (x) = −ANNxx

θ (x) (6)

ANNxy
θ (x) = CSx5

√
x2
5 + x2

14, (7)

where x5 and x14 represent components of the non-dimensional vector x which are equal

to σS/||X||2 and σT/||X||2 in the center of 3× 3 spatial stencil, respectively. The derived

functions are continuous on a bounded domain (|xi| ≤ 1), and thus they can be easily

learned with the ANN. The functional representations of the parameterizations derived

below are continuous as well.

Zanna-Bolton 2020 parameterization

Similarly, we can show that Zanna and Bolton (2020) parameterization

T̂ = −γ∆2

(
−ω σS ω σT

ω σT ω σS

)
− 1

2
γ∆2(ω2 + σ2

T + σ2
S)

(
1 0
0 1

)
(8)

can be represented as follows:

ANNxx
θ (x) = γx5x23 −

1

2
γ(x2

5 + x2
14 + x2

23), (9)

ANNyy
θ (x) = −γx5x23 −

1

2
γ(x2

5 + x2
14 + x2

23), (10)

ANNxy
θ (x) = −γx14x23. (11)

Leith 1996 parameterization

Next, we consider Leith (1996) parameterization:

T̂ = CL∆
3|∇ω|

(
σT σS

σS −σT

)
. (12)

By approximating the gradient with central differences and assuming an isotropic and

uniform grid, we obtain:

ANNxx
θ (x) =

1

2
CLx14

√
(x24 − x22)2 + (x26 − x20)2, (13)
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ANNyy
θ (x) = −ANNxx

θ (x), (14)

ANNxy
θ (x) =

1

2
CLx5

√
(x24 − x22)2 + (x26 − x20)2 (15)

Biharmonic Smagorinsky parameterization

The biharmonic Smagorinsky subgrid model has the form:

T̂ = −CS∆
4
√

σ2
S + σ2

T∇2

(
σT σS

σS −σT

)
. (16)

By approximating the ∇2 operator on an isotropic and uniform grid, we obtain:

ANNxx
θ (x) = −CS(x15 + x13 + x17 + x11 − 4x14)

√
x2
5 + x2

14, (17)

ANNyy
θ (x) = −ANNxx

θ (x), (18)

ANNxy
θ (x) = −CS(x6 + x4 + x8 + x2 − 4x5)

√
x2
5 + x2

14. (19)

Text S2. Robustness of division by small numbers

The robustness of the parameterization with the dimensional scaling,

T̂(X,∆) = ∆2||X||22ANNθ(X/||X||2), (20)

atX = 0 is achieved as follows. We first identify that most known parameterizations, such

as Smagorinsky (1963) and Leith (1996), predict zero fluxes when the velocity gradients

are zero. We enforce the same property for our parameterization by extending Eq. (20)

with:

T̂(X = 0,∆) = 0. (21)

Numerically, this property is implemented by adding a very small number (10−30s−1) to

the denominator in Eq. (20).
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Additionally, we ensure that Eq. (20) is continuous at X = 0, that is, the corresponding

limit exists and is equal to the function value (zero):

lim
X→0

T̂(X,∆) = T̂(X = 0,∆) = 0. (22)

The function ANNθ is continuous as a composition of continuous activation functions

(ReLU). Furthermore, for any ||X||2 > 0, the function ANNθ is evaluated on a unit

sphere, which is a compact set. Therefore, the continuous function ANNθ is bounded on

the compact set by some constant A(θ) that depends only on the trainable parameters θ.

We verify the limit (Eq. (22)) by inequality:

∣∣∆2||X||22ANNθ(X/||X||2)
∣∣ ≤ A(θ)∆2||X||22 → 0 as X → 0. (23)

Text S3. Details of the training algorithm

The training dataset is created using four coarse-graining factors, selected to be similar

to those used in Gultekin et al. (2024), and 10 depths (extending Gultekin et al. (2024)),

see Table S1.

ANN model architecture

For offline analysis, we use an ANN, also known as a multilayer perceptron (MLP), with

two hidden layers, 32 neurons each, in a total of 2051 parameters, both for parameteriza-

tions with and without dimensional scaling (see Table S1). For online implementation, the

ANN model is chosen to be smaller (see Table S1): it has only a single hidden layer with

20 neurons, as in Prakash et al. (2022), with a total of 623 trainable parameters. We veri-

fied that reducing the number of neurons for online implementation does not significantly

impact the response in kinetic and potential energy and the time-mean sea surface tem-
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perature in short 5-year simulations in the global ocean model OM4 (Figure S5). Thus,

we keep the smaller ANN for online implementation to bound its computational cost to

within ≈ 10% of the global ocean model runtime.

Training algorithm and boundary conditions

We train the ANN model on data from the full globe, similarly to Gultekin et al. (2024).

The loss function is defined to optimize for the divergence (∇· ) of subfilter fluxes (T)

similarly to Zanna and Bolton (2020) and Srinivasan, Chekroun, and McWilliams (2024).

The mean squared error (MSE) loss is minimized on every 2D snapshot of subfilter forcing

S and normalized by the corresponding l2-norm of S (Agdestein & Sanderse, 2025):

LMSE = ||(S−∇ · T̂) ·m||22/||S ·m||22, (24)

where m is the mask of wet points. The input features (velocity gradients, X) and

predicted subfilter fluxes are set to zero on the land as well: T̂ ≡ m · T̂(m ·X). That is,

we impose zero Neumann boundary condition (Zhang et al., 2024) and free-slip boundary

condition. We found that including the grid points adjacent to the land to the loss function

is essential for ensuring the numerical stability of online runs. Another important design

choice for online numerical stability is performing the ANN inference on the collocated,

rather than on the staggered grid, similarly to Guillaumin and Zanna (2021) and Agdestein

and Sanderse (2025).

The loss function (Eq. (24)) is evaluated and minimized for a total of 16000 two-

dimensional snapshots during training, see Table S1. We do not use any regularizations,

such as weight decay, during the training of ANNs because the size of the dataset is much

bigger relative to the number of trainable parameters. We verified that the offline skill on
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training and testing data is very similar, suggesting that there is no overfitting, and there

is no need for regularization.

Sensitivity to the random seed

The R-squared of the offline predictions of the ANN is almost insensitive to the random

seed used to initialize the training algorithm. In addition, the prediction errors S−∇·T̂ are

highly correlated between different seeds (as in Srinivasan et al. (2024)). We also confirmed

that the kinetic energy is nearly unchanged in online two-layer Double Gyre experiments,

using ANNs generated from different initializations of the training algorithm, similarly

to Zhang et al. (2024). However, there is some sensitivity to the training algorithm

initialization for the mean flow prediction: the response pattern in the mean flow is

similar, but the response magnitude can vary by 50%. The sensitivity of the mean fields

to the random seed is not apparent in the global ocean configuration OM4.

Choice of the filter scale in the training dataset

The filtering operator used is a Gaussian filter implemented in the package GCM-Filters

(Grooms et al., 2021; Loose et al., 2022) with width ∆, chosen in relation to the coarse

grid spacing ∆. The filter-to-grid width ratio parameter (FGR = ∆/∆) represents the

strength of the subfilter parameterization: relatively low value of FGR (∆/∆ = 1) in

the training dataset results in a learned parameterization that has negligible effect in

online simulations. On the other hand, a relatively large value (FGR = 4) results in over-

energized grid-scale features. The value used here (FGR = 3) corresponds to the strongest

parameterization effect without generating grid-scale noise. Note that the optimal FGR

parameter depends on the numerical and physical dissipation schemes present in the
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ocean model, as the ANN subfilter parameterization alone does not produce enough grid-

scale dissipation. For the discussion of how to choose FGR parameter see Perezhogin,

Balakrishna, and Agrawal (2024); Perezhogin, Zhang, Adcroft, Fernandez-Granda, and

Zanna (2024); Perezhogin and Glazunov (2023).

Text S4. Online implementation and numerical stability in MOM6

The trained parameters of the ANN subfilter model are saved to a NetCDF file and

read by the numerical ocean model during initialization. The neural network inference is

implemented using the Fortran module of Sane, Reichl, Adcroft, and Zanna (2023). The

ANN inference takes ≈ 10% of the ocean model runtime, for a neural network with one

hidden layer and 20 neurons. However, the inference can be further accelerated, as we

found that the inference in Python is generally faster than in Fortran.

The implemented ANN parameterization works stably (free of NaNs in prognostic fields)

in idealized Double Gyre and global ocean OM4 configurations, without any tuning, in

part because the biharmonic Smagorinsky model provides the dissipation. In the idealized

configuration NeverWorld2 (NW2, Marques et al. (2022)), however, tuning is required to

improve the numerical stability even when a backscatter parameterization (whether our

ANN or more traditional parametrization) is used together with biharmonic Smagorinsky

model; e.g., Yankovsky, Bachman, Smith, and Zanna (2024). We have modified the

ANN parameterization to achieve stability, without optimizing for online metrics, using

a set of minimal changes. Our tuning includes attenuating the magnitude of the ANN

parameterization in high-strain regions following Perezhogin, Zhang, et al. (2024) and
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allowing the MOM6 dynamical core to truncate velocities if they are too big. Additionally,

at resolution 1/6◦ in NW2, we had to reduce the time stepping interval.
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Table S1. Parameters of the training data and artificial neural network (ANN) model

Category Value

Training Data Parameters
High-resolution data CM2.6 (Griffies et al., 2015), 0.1◦ ocean grid
Diagnosed features σS, σT , ω, S, T
Layer Depths (m) 5, 55, 110, 180, 330, 730, 1500, 2500, 3500, 4500
Horizontal grid type Tripolar
Horizontal extent All globe including polar latitudes
Coarse Grid Spacing, ∆ (nominal) 0.4◦, 0.9◦, 1.2◦, 1.5◦

Coarse Grid Spacing, ∆ (km, 60S◦ − 60N◦) 22-44, 50-100, 67-134, 85-167
Gaussian Filter Width, ∆ 1.2◦, 2.7◦, 3.6◦, 4.5◦; i.e., ∆/∆ = 3
Training / Validation / Test Splitting (years) 181− 188 / 194 / 199− 200
Snapshot Averaging Interval 5 days
Time Seperation Between Snapshots 1 month
Number of 2D Snapshots used for Training 10× 4× 8× 12 = 3840
Number of Training Iterations 16000 (each iteration randomly selects 2D snapshot)

ANN Parameters
Input Size 3× 3
ANN type Multilayer Perceptron (MLP)
ANN used for offline analysis 2 hidden layers, 32 neurons each, 2051 parameters
ANN used in online implementation 1 hidden layer with 20 neurons, 623 parameters
Activation Function ReLU
Note Regularization is not applied during training
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RMSE 0◦E 15◦E 30◦E 45◦E
Control(1/3◦) 51.3 46.8 49.1 36.8
Yankovsky24(1/3◦) 33.5 31.6 29.9 27.4
ZB20-Reynolds(1/3◦) 32.7 25.4 26.1 21.6
ANN(1/3◦) 35.0 24.3 30.9 28.6
Control(1/4◦) 52.1 42.1 40.3 34.6
Yankovsky24(1/4◦) 27.8 23.0 20.7 21.3
ZB20-Reynolds(1/4◦) 26.9 21.0 18.4 18.5
ANN(1/4◦) 29.2 20.0 16.7 19.7
Control(1/6◦) 42.7 30.7 31.8 26.7
Yankovsky24(1/6◦) 26.2 22.3 16.1 16.8
ZB20-Reynolds(1/6◦) 27.7 24.5 18.9 18.4
ANN(1/6◦) 23.5 18.8 13.8 14.6

Table S2. Online results in idealized configuration NeverWorld2 at three coarse resolutions

(1/3◦, 1/4◦ and 1/6◦). The root mean squared errors (RMSE) in 1000-day averaged position

of interfaces over four meridional transects at longitudes 0◦E, 15◦E, 30◦E and 45◦E. RMSE

units are metres. The interfaces for Control and ANN-parameterized runs at resolution 1/4◦ at

longitudes 0◦E and 45◦E are also shown in Figure S3. The error is computed w.r.t. 1/32◦ model.

Yankovsky24 stands for parameterization of Yankovsky et al. (2024), ZB20-Reynolds stands for

Zanna and Bolton (2020) parameterization implemented and modified by Perezhogin, Zhang, et

al. (2024). Parameterizations are not retuned when resolution is changed.
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ACC transport [Sv]
1/32◦ 235.3
Control(1/3◦) 242.7
Yankovsky24(1/3◦) 237.4
ZB20-Reynolds(1/3◦) 230.2
ANN(1/3◦) 241.6
Control(1/4◦) 245.1
Yankovsky24(1/4◦) 229.9
ZB20-Reynolds(1/4◦) 225.4
ANN(1/4◦) 236.9
Control(1/6◦) 243.3
Yankovsky24(1/6◦) 230.4
ZB20-Reynolds(1/6◦) 219.5
ANN(1/4◦) 228.8

Table S3. Online results in idealized configuration NeverWorld2. The ACC transport through

the Drake Passage at 0◦E averaged over 800 days.
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Figure S1. Extension of Figure 1 in the main text with generalization of two ANN parame-

terizations to multiple unseen depths, but seen resolution used for training (0.9◦).
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Figure S2. Upscale KE transfer (positive numbers correspond to backscatter) averaged over

800 days and integrated over depth in idealized NeverWorld2 configuration. (a) Diagnosed from

high-resolution (1/32◦) simulation by filtering and coarsegraining, (b) and (c) predicted by the

ANN offline and online, respectively, at coarse resolution 1/4◦. The ANN was trained on global

ocean data and thus generalizes well to a new configuration as seen in the accurate prediction

of KE transfer offline. Prediction offline means that filtered and coarsegrained snapshots of the

high-resolution model were given as inputs to the ANN. Slight degradation of prediction online is

related to the difference in magnitude of small-scale velocity gradients and large-scale circulation

patterns in the coarse ocean model.
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Figure S3. Online results in idealized configuration NeverWorld2. The 1000-days averaged

isopycnal interfaces in the meridional transect of Drake Passage (Longitude 0◦E, left column) and

at Longitude 45◦E. The blue dashed lines show the position of interfaces in the coarse-resolution

(1/4◦) experiment, and the gray lines show the interfaces of the high-resolution model 1/32◦.

The root mean squared errors (RMSE) between coarse and high-resolution models are provided.
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Figure S4. Online results in the global ocean-ice model OM4 (Adcroft et al., 2019), North

Atlantic region. Comparison of the ANN parameterization to a baseline parameterization tested

in Chang et al. (2023). We consider biases in sea surface temperature (SST), sea surface salinity

(SSS). Model output is averaged over years 1981-2007. The observational data for SST and SSS

is given by the World Ocean Atlas 2018 (WOA18, Locarnini et al. (2018)). Root mean square

errors (RMSEs) between simulations and observations are provided.
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Online metrics in OM4

Offline metrics in CM2.6

Figure S5. Upper row: Offline performance for the ANN parameterization with dimensional

scaling on CM2.6 data. Three versions of the parameterization differ in the number of neurons

used or the size of the spatial stencil. In particular, the left column is the ANN used in online

simulations, and the center column is the ANN used in offline analysis but retrained using all

available data. Lower row: Kinetic energy (KE) and available potential energy (APE) in short

5-year OM4 parameterized simulations for these three versions of the ANN parameterization.
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Figure S6. (Upper row) Offline kinetic energy (KE) transfer spectrum, where T (k) =

2πkRe(F(u)∗F(S)), and F is the 2D Fourier transform, Re is the real part, and ∗ is the complex

conjugate. (Lower row) power spectrum of subfilter forcing 2πkF(S)∗F(S). Spectra are com-

puted in the North Atlantic region (25 − 45◦N)×(60 − 40◦W) and at depth 5m. Rd = 22.6km

is the Rossby deformation radius in this region. Results are shown for an ANN used in online

simulations.

We can identify two effects of the coarsening of the resolution on the diagnosed and predicted

eddy fluxes. First, the diagnosed interscale energy transfer vanishes once the Rossby deforma-

tion radius becomes unresolved. This can be explained by the blocking of the inverse energy

cascade on the scales much larger than the forcing scale (deformation radius). Second, the ANN

parameterization predicts even smaller kinetic energy transfer at these coarse resolutions (≈ 1◦).

It is a subject of future studies whether we should attempt to achieve more accurate predictions at

these resolutions with improved architecture of the ANN or consider alternative parameterization

approaches, such as parameterizing buoyancy fluxes instead, Balwada et al. (2025).
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