Generalizable neural-network parameterization of mesoscale eddies in idealized and global ocean models 2

Pavel Perezhogin¹, Alistair Adcroft³, Laure Zanna^{1,2}

¹Courant Institute of Mathematical Sciences, New York University, New York, NY, USA ²Center for Data Science, New York University, New York, NY, USA ³Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA

Key Points:

1

3

4 5 6

7

13

8	• Physics constraints are developed for a neural-network parameterization of mesoscale
9	eddy fluxes
10	• Dimensional scaling constraints improve offline generalization to unseen grid res-
11	olutions and depths
12	• New parameterization improves the representation of kinetic and potential energy

online in coarse idealized and global ocean models

Corresponding author: Pavel Perezhogin, pp2681@nyu.edu

14 Abstract

Data-driven methods have become popular to parameterize the effects of mesoscale ed-15 dies in ocean models. However, they perform poorly in generalization tasks and may re-16 quire retuning if the grid resolution or ocean configuration changes. We address the gen-17 eralization problem by enforcing physics constraints on a neural network parameteriza-18 tion of mesoscale eddy fluxes. We found that the local scaling of input and output fea-19 tures helps to generalize to unseen grid resolutions and depths offline in the global ocean. 20 The scaling is based on dimensional analysis and incorporates grid spacing as a length 21 scale. We formulate our findings as a general algorithm that can be used to enforce data-22 driven parameterizations with dimensional scaling. The new parameterization improves 23 the representation of kinetic and potential energy in online simulations with idealized 24 and global ocean models. Comparison to baseline parameterizations and impact on global 25 ocean biases are discussed. 26

27 Plain Language Summary

Ocean models can't directly simulate eddies that are smaller than the resolution 28 of the computational grid. The effect of these eddies is represented by parameterizations. 29 Machine learning offers a new way to build parameterizations directly from data, how-30 ever, such parameterizations may fail when tested in new, unseen scenarios. Here, we 31 leverage physics constraints to mitigate this, generalization, problem. Specifically, we found 32 33 that method of dimensional analysis can be used to constrain data-driven parameterizations to enhance their accuracy in new scenarios without the need for retraining. New 34 parameterization is tested in a realistic ocean model and brings us closer to robust, data-35 driven methods for ocean and climate models. 36

37 1 Introduction

Numerical ocean models rely on parameterizations to represent the effects of phys-38 ical processes smaller than the model grid spacing, which are unresolved (Fox-Kemper 39 et al., 2019; Hewitt et al., 2020; Christensen & Zanna, 2022). Recently, there has been 40 a growing interest in applying machine learning methods to parameterize these subgrid 41 physics in ocean models (Bolton & Zanna, 2019; Zanna & Bolton, 2020; Guillaumin & 42 Zanna, 2021; Zhang et al., 2023; Sane et al., 2023; Yan et al., 2024; Perezhogin, Zhang, 43 et al., 2024; Maddison, 2024). However, developing data-driven parameterizations for ocean 44 models is still in its early stages, and their application is often limited to idealized con-45 figurations. Deploying data-driven parameterizations in the global ocean presents sev-46 eral challenges, one of which is addressed in this study – the problem of generalization 47 to unseen scenarios. 48

Data-driven parameterizations rely heavily on sets of training data, and their suc-49 cessful implementation often requires tuning when applied to a new grid resolution (Zhang 50 et al., 2023), flow regime (Ross et al., 2023), model configuration (Perezhogin, Zhang, 51 et al., 2024), depth, or geographical region (Gultekin et al., 2024). However, in practice, 52 it would be desirable to have a single parameterization that performs effectively across 53 a variety of scenarios without requiring retuning. The ability of a data-driven model to 54 work on new (testing) data, which is distinct from the training data, is measured by the 55 generalization error (Bishop & Nasrabadi, 2006; Hastie et al., 2009). Data-driven meth-56 ods work best when the testing data is drawn from the same distribution as the train-57 ing data. However, in geophysical applications, the distribution of physical variables can 58 vary vastly across different scenarios—a phenomenon referred to as a *distribution shift* 59 (Beucler et al., 2024; Gultekin et al., 2024). In this case, domain knowledge and physics 60 constraints can be leveraged to mitigate the generalization error of data-driven models 61 (Kashinath et al., 2021). 62

In this work, we demonstrate how physics constraints can be leveraged to enhance 63 the generalization of an Artificial Neural Network (ANN) parameterization of the ocean 64 mesoscale eddy fluxes. Following Beucler et al. (2024), we rescale features of the ANN 65 to minimize the distribution shift. To identify a suitable normalization technique for eddy 66 fluxes, we apply dimensional analysis and Buckingham (1914)'s Pi theorem. Specifically, 67 we introduce a local dimensional scaling constructed from the grid spacing and veloc-68 ity gradients (Prakash et al., 2022). The local scaling improves offline generalization of 69 the ANN parameterization to unseen grid resolutions and depths, as found in the global 70 ocean dataset CM2.6 (Griffies et al., 2015). Our findings are formulated as a general al-71 gorithm that can be used to incorporate the dimensional scaling in future applications. 72 Additional physics constraints for the ANN parameterization are enforced following Guan 73 et al. (2022) and Srinivasan et al. (2024). We present an online evaluation of the new 74 ANN parameterization in the GFDL MOM6 ocean model (Adcroft et al., 2019) in ide-75 alized and global configurations. 76

⁷⁷ 2 A Method to Constrain Neural Network with Dimensional Scaling

Here we introduce the concept of physical dimensionality and demonstrate how it
can be used to constrain data-driven parameterizations. We start with a trivial example, followed by a general algorithm. Finally, we draw connections to existing approaches.

81

2.1 Trivial Example

⁸² Consider the case where a scalar momentum flux T (units of m²s⁻²) can be pre-⁸³ dicted using a length scale Δ (units of m) and inverse time scale X (units of s⁻¹):

$$T = f(\Delta, X). \tag{1}$$

Eq. (1) must remain invariant under rescaling the units of time and length, that is for 84 any $\alpha, \beta > 0$, the equality must hold: $f(\alpha \Delta, \beta X) = \alpha^2 \beta^2 f(\Delta, X)$. However, the unit 85 invariance can be violated when f is parameterized by neural networks. One way to en-86 force it is by leveraging Buckingham (1914)'s Pi theorem, which states that the dimen-87 sional equation (such as Eq. (1)) can be rewritten in non-dimensional form. Specifically, 88 for a set of three dimensional variables (T, Δ, X) with two independent dimensions (length 89 and time), there is only one (three minus two) non-dimensional variable $(\pi_1 = T/(\Delta^2 X^2))$. 90 Thus, Eq. (1) transforms to $\pi_1 = \text{const}$, or equivalently: 91

$$T = \Delta^2 X^2 \theta, \tag{2}$$

where θ can be interpreted as a non-dimensional Smagorinsky (1963) coefficient. A datadriven parameterization in the form of Eq. (2) with a trainable parameter θ , which is constant, follows the dimensional scaling as a hard constraint, in contrast to Eq. (1), which does not guarantee dimensional consistency. Eq. (2) promotes generalization as it explicitly accounts for the change in the magnitude of independent variables (Δ and X), constraining the learnable part of the mapping (θ) to be on the order of unity.

98

103

104

2.2 General Algorithm

⁹⁹ Extending the example above, we suggest an algorithm to enforce dimensional scal-¹⁰⁰ ing in ANN parameterizations by preprocessing input and output features:

- 101 1. Identify the input features that contribute significantly to the accurate prediction 102 of the output features;
 - 2. Construct non-dimensional input and output features from a *combined* set of identified input and output features;
- 3. Verify that a traditional known parameterization is a special case of the constructed non-dimensional mapping.

Step 1 follows standard dimensional analysis textbooks (Bridgman, 1922; Baren-107 blatt, 1996). Specifically, a relevant set of input features can be identified by physical 108 intuition or through ablation studies by evaluating the gain in offline performance from 109 including additional dimensional features in the input set. Constructing non-dimensional 110 features is a common approach in physics-constrained data-driven parameterizations (Ling 111 et al., 2016; Schneider et al., 2024). However, the normalization of input features is of-112 ten considered separately from the normalization of output features (Xie et al., 2020; Kang 113 et al., 2023; Beucler et al., 2024; Christopoulos et al., 2024), unlike our proposed method 114 (step 2 above). Additionally, the emphasis in these works is often placed on identifying 115 normalization factors that minimize the distribution shift, while we suggest starting with 116 identifying features responsible for the prediction (step 1). Finally, traditional param-117 eterizations are often used to propose efficient normalization factors (Xie et al., 2020; Kang 118 et al., 2023; Connolly et al., 2025), while we instead advocate for having traditional pa-119 rameterizations as a special case (step 3, Prakash et al. (2022, 2024)). 120

¹²¹ 3 Physics Constraints for Ocean Mesoscale Parameterization

Our goal is to predict the subfilter momentum fluxes of mesoscale eddies using an Artificial Neural Network (ANN) parameterization, see schematic in Figure 1(a). Various physical invariances were imposed to promote generalization.

125

3.1 Learning Subfilter Fluxes

We consider the acceleration produced by subfilter ocean mesoscale eddies (subfilter forcing, Bolton & Zanna, 2019):

$$\partial_t \overline{\mathbf{u}} = \mathbf{S} = (\overline{\mathbf{u}} \cdot \nabla) \overline{\mathbf{u}} - \overline{(\mathbf{u} \cdot \nabla) \mathbf{u}},\tag{3}$$

where $\mathbf{u} = (u, v)$ is the horizontal ocean velocity, $\nabla = (\partial_x, \partial_y)$ is the horizontal gradient, and $\overline{(\cdot)}$ is the horizontal filter. The subfilter forcing can be approximated (Loose, Marques, et al., 2023) as a divergence of the momentum flux:

$$\mathbf{S} \approx \nabla \cdot \mathbf{T} \tag{4}$$

131 where

$$\mathbf{T} = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix} = \begin{pmatrix} \overline{u} \, \overline{u} - \overline{uu} & \overline{u} \, \overline{v} - \overline{uv} \\ \overline{u} \, \overline{v} - \overline{uv} & \overline{v} \, \overline{v} - \overline{vv} \end{pmatrix}.$$
(5)

We predict the three components of **T**, namely T_{xx} , T_{xy} , T_{yy} , rather than **S** directly, sim-132 ilarly to Zanna and Bolton (2020) (ZB20 hereafter) to impose momentum conservation 133 as a hard constraint. We enforce symmetry of the tensor **T** by predicting T_{xy} and shar-134 ing its prediction with T_{yx} , which guarantees angular momentum conservation (Griffies, 135 2018, Section 17.3.3). We also promote rotational and reflection invariances via data aug-136 mentation (Guan et al., 2022), independently rotating each training snapshot by 90° and 137 reflecting it along the x and y axes, resulting in $8 = 2^3$ augmented snapshots per orig-138 inal one. 139

We learn the components of **T** by minimizing the mean squared error (MSE) loss function: 141 function:

$$\mathcal{L}_{\text{MSE}} = ||(\mathbf{S} - \nabla \cdot \widehat{\mathbf{T}}) \cdot m||_2^2 / ||\mathbf{S} \cdot m||_2^2, \tag{6}$$

where m is the mask of wet points and \mathbf{T} is the neural network prediction of the subfilter flux as discussed below. See SI for further details.

¹⁴⁴ 3.2 Input Features

Here, we identify the input features relevant for the prediction of momentum fluxes (step 1 of the algorithm presented in Section 2.2).

Figure 1. (a) Artificial neural network (ANN) parameterization predicting the divergence of subfilter fluxes given the velocity gradients on the horizontal stencil of 3×3 points. (b) Snapshots of predictions by two ANNs: with local dimensional scaling (Eq. (11), center column) or with fixed normalization coefficients (Eq. (10), right column) at the resolution (0.9°) and depth (5m) used for training (testing data is separated by 10 years). (c) Prediction at the unseen resolution (0.4°) and the same depth (5m). (d) Coefficient of determination (\mathbb{R}^2) in prediction of subfilter forcing for various resolutions and depths, different from that used for training $(0.9^{\circ}, 5m)$. The \mathbb{R}^2 is averaged over 2 years of held-out data and excludes 2 grid points adjacent to the coastline, where green and orange boxes correspond to panels (b) and (c), respectively.

Following ZB20, we consider the components of the strain-rate tensor and vorticity as input features:

$$\overline{\sigma}_{S} = \partial_{y}\overline{u} + \partial_{x}\overline{v} \quad - \text{ shearing strain,}
\overline{\sigma}_{T} = \partial_{x}\overline{u} - \partial_{y}\overline{v} \quad - \text{ horizontal tension/stretch,}$$

$$\overline{\omega} = \partial_{x}\overline{v} - \partial_{y}\overline{u} \quad - \text{ relative vorticity.}$$
(7)

These input features exclude explicit dependence on the velocity, guaranteeing Galilean 149 invariance of the parameterization (Srinivasan et al., 2024; Pope, 1975; Lund & Novikov, 150 1993; Ling et al., 2016). When using the input features (Eq. (7)) pointwise, the result-151 ing ANN parameterization highly correlates with the ZB20 equation-discovery model. 152 Thus, we decided to include the non-local contribution of these features (Srinivasan et 153 al., 2024). To do so, the input vector to the ANN consists of velocity gradients, each de-154 fined on a 3×3 horizontal stencil and flattened into a vector of length 9 (denoted as 155 $\left[\cdot\right]$ (19): 156

$$\mathbf{X} = \begin{pmatrix} [\overline{\sigma}_S] \uparrow 9\\ [\overline{\sigma}_T] \uparrow 9\\ [\overline{\omega}] \uparrow 9 \end{pmatrix} \in \mathbb{R}^{27}.$$
(8)

Including information about velocity gradients from the closest neighboring points is a
common approach in subgrid modeling (Maulik & San, 2017; Maulik et al., 2019; Pawar
et al., 2020; Wang et al., 2021, 2022; Gultekin et al., 2024).

To facilitate generalization across different resolutions (scale-aware or grid-aware parameterization, Bachman et al., 2017), we account for the local grid spacing of the coarse resolution model $\Delta = \sqrt{\Delta x \Delta y}$, resulting in the following functional form of the parameterization (Lund & Novikov, 1993; Li et al., 2025):

$$\mathbf{\Gamma} \approx \mathbf{\widetilde{T}}(\mathbf{X}, \Delta). \tag{9}$$

Accounting for grid spacing is physically justified as velocity gradients and momentum fluxes differ in dimensionality and require a length scale to be invoked.

3.3 Neural Network Parameterizations

¹⁶⁷ We consider a baseline data-driven parameterization of eddy fluxes with fixed nor-¹⁶⁸ malization coefficients, following the form of Eq. (9):

$$\mathbf{T}(\mathbf{X}, \Delta) = a_{\mathrm{T}} \mathrm{ANN}_{\theta}(\mathbf{X}/a_{\mathrm{X}}, \Delta/a_{\Delta}), \tag{10}$$

where ANN_{θ} is the neural network with trainable parameters θ , coefficients $a_{\text{T}} = 10^{-2} \text{m}^2 \text{s}^{-2}$ and $a_{\text{X}} = 10^{-6} \text{s}^{-1}$ approximate the standard deviations of eddy fluxes and velocity gradients in our dataset, and $a_{\Delta} = 50 \text{km}$. Using fixed normalization coefficients in parameterizations similar to Eq. (10) is a common practice (Srinivasan et al., 2024). Below, we contrast this approach to a normalization that follows solely from dimensional analysis presented in Section 2.2.

A combined set of input and output features $(\mathbf{T}, \mathbf{X}, \Delta)$ is used to construct nondimensional input $(\mathbf{X}/||\mathbf{X}||_2)$ and output $(\mathbf{T}/(\Delta||\mathbf{X}||_2)^2)$ features (step 2 in Section 2.2), where $||\mathbf{X}||_2 = \sqrt{\sum_i X_i^2}$. This normalization of features is local, that is computed separately for each grid point. By designing the ANN to operate on non-dimensional variables, we propose a parameterization with the local dimensional scaling (Reissmann et al., 2021; Prakash et al., 2022):

$$\widehat{\mathbf{T}}(\mathbf{X}, \Delta) = \Delta^2 ||\mathbf{X}||_2^2 \text{ANN}_{\theta}(\mathbf{X}/||\mathbf{X}||_2).$$
(11)

According to the Buckingham (1914)'s Pi theorem, there is freedom in constructing nondimensional variables. We opt to use the non-dimensional vector $\mathbf{X}/||\mathbf{X}||_2$ to constrain the range of its components between -1 and 1, thereby reducing the distribution shift in ANN inputs.

Following step 3 in Section 2.2, we show that the model form (Eq. (11)) admits ZB20, 185 Smagorinsky, biharmonic Smagorinsky, and Leith (1996) parameterizations as special 186 cases, with well-behaved functional representations (see Text S1 in SI for details). Fur-187 thermore, Eq. (11) guarantees that the predicted fluxes vanish $(\mathbf{T} \to \mathbf{0})$ as velocity gra-188 dients diminish $(\mathbf{X} \to \mathbf{0})$, similarly to known parameterizations, see Text S2 in SI. We 189 experimentally verified that the spatial variability of the normalization factor $(||\mathbf{X}||_2)$ 190 in Eq. (11) does not amplify the parameterization errors $(\mathbf{S} - \nabla \cdot \mathbf{T})$ compared to Eq. 191 (10).192

¹⁹³ 4 Experimental setups

194

4.1 Training dataset

The training dataset is created using the climate model CM2.6 (Griffies et al., 2015), 195 which has a nominal ocean resolution of 0.1° . Velocity gradients (Eq. (7)), used as in-196 put features, and subfilter forcing $(\mathbf{S}, \text{Eq. }(3))$, used as output, are diagnosed using hor-197 izontal filtering followed by coarse-graining, which avoids the inclusion of discretization 198 errors (Guillaumin & Zanna, 2021; Christensen & Zanna, 2022; Agdestein & Sanderse, 199 2025). The filtering is applied by sliding a Gaussian kernel with a filter width three times 200 the width of the target coarse grid box, using Grooms et al. (2021); Loose et al. (2022). 201 Subsequent coarse-graining is done by averaging over the fine grid boxes contained within 202 each coarse grid box. The filtering and coarse-graining are done for 4 coarse resolutions 203 and 10 depth levels (Figure 1(d) and Table S1 in SI). 204

4.2 ANN architecture

For the offline analysis of parameterizations (Eqs. (10), (11)), we found that an ANN with two hidden layers, 32 neurons each, was sufficiently large to effectively learn from the input features. See Text S3 in SI for details.

4.3 Online implementation

We implement the ANN mesoscale eddy parameterization (Eq. (11)) in two con-210 siderably different configurations of the GFDL MOM6 ocean model (Adcroft et al., 2019) 211 at eddy-permitting $(1/4^{\circ})$ resolution. To ensure that ANN inference remains computa-212 tionally efficient, we retrain a smaller network with only one hidden layer and 20 neu-213 rons, which keeps the ANN inference time below 10% of the ocean model runtime (Text 214 S3 in SI for details). While our goal was to implement the ANN parameterization with-215 out further modifications, minor adjustments were necessary for numerical stability, see 216 Text S4 in the SI. 217

The idealized ocean configuration, NeverWorld2 (NW2, Marques et al. (2022)), includes 15 stacked shallow water layers, featuring a single basin ocean with a reentrant channel. The circulation is driven by a steady wind forcing, giving rise to a circumpolar current and gyres. Coarse simulations are initialized from rest, and run for 30000 days, similar to Marques et al. (2022) and Perezhogin, Zhang, et al. (2024).

The second configuration, OM4 (Adcroft et al., 2019), is a coupled ocean-sea-ice model forced at the air-sea interface by prescribing the atmosphere state according to the CORE-II interannual forcing (IAF) protocol (Large & Yeager, 2009). The simulations span 60 years (1948-2007) and were initialized with a state of the Control model after 270 years of spin-up. The biharmonic Smagorinsky scheme for gridscale dissipation is used with viscosity coefficient $\nu_4 = 0.06\sqrt{\overline{\sigma}_S^2 + \overline{\sigma}_T^2}\Delta^4$ (Adcroft et al., 2019), applied in control and parameterized (mixed modeling, Meneveau and Katz (2000)) simulations.

²³¹ 5 Results

232

5.1 Offline generalization

Our primary goal is to demonstrate that the local dimensional scaling promotes the generalization of the eddy parameterization to unseen grid resolutions and depths. Limited generalization in such scenarios has been reported for previous machine-learning models of mesoscale eddies (Zhang et al., 2023; Gultekin et al., 2024; Ross et al., 2023) and traditional physics-based parameterizations (Yankovsky et al., 2024).

We compare two ANNs: one incorporating local dimensional scaling (Eq. (11)) and 238 a baseline ANN with fixed normalization coefficients (Eq. (10)). To explore generaliza-239 tion, we let the ANNs learn based solely on data from one combination of depth (5m) 240 and coarse grid resolution (0.9°) during training. The local grid spacing varies accord-241 ing to the tripolar grid used in the ocean component of the CM2.6 climate model. In par-242 ticular, at the nominal resolution of 0.9°, the coarse grid spacing $\Delta = \sqrt{\Delta x \Delta y}$ is in a 243 range from 50km to 100km for non-polar latitudes ($60S^{\circ}-60N^{\circ}$). Spatially varying grid 244 spacing provides essential information for effective learning by the baseline ANN. The 245 offline evaluation of ANNs on held-out data similar to that used for training is shown 246 in Figure 1(b). Both ANNs exhibit high and equal pattern correlation (0.90) and \mathbb{R}^2 (0.81)247 in the prediction of the norm of subfilter forcing. 248

We now consider generalization to a different grid resolution, which is finer (0.4°) 249 compared to that used for training (0.9°) , see Figure 1(c). The range of grid spacings 250 in this case is beyond the range seen by a baseline ANN during training, resulting in a 251 distribution shift between the testing and training data. The baseline ANN parameter-252 ization (Eq. (10)) predicts the norm of subfilter forcing at a new grid resolution with a 253 reasonably high pattern correlation (0.85). However, the magnitude of the prediction is 254 too large, resulting in a low R^2 (-2.71). Instead, the ANN with dimensional scaling (Eq. 255 (11)) offers improved generalization capability. The proposed ANN naturally accounts 256 for the reduction of the grid spacing and reduces the magnitude of the prediction, re-257 sulting in high pattern correlation (0.94) and R^2 (0.87) metrics (Figure 1(c)). 258

The generalization to both finer and coarser grids, and different depths, is summarized in Figure 1(d). At coarser grid spacings $(1.2^{\circ}, 1.5^{\circ})$ compared to that used for training (0.9°) , the local dimensional scaling again helps to achieve higher R² by increasing the magnitude of the prediction.

In the deep layers, the subfilter forcing and velocity gradients are approximately one order of magnitude smaller than near the surface. Thus, a baseline ANN, trained on much larger values near the surface (such as here, at depth 5m), can lead to inaccurate predictions at depth (Figure S1 in SI). However, the local dimensional scaling effectively rescales the input features, thereby improving generalization to deep, unseen layers, as summarized in Figure 1(d).

The major reason why baseline ANN has a poor skill at unseen resolutions and depths is the lack of training data. We verified that the generalization of the baseline ANN to various resolutions and depths can be restored if these resolutions and depths are included in the training dataset. Incorporating local dimensional scaling as done in this work, therefore, requires less training data and improves out-of-distribution generalization.

Figure 2. Effect of increasing resolution in idealized configuration NeverWorld2 (Marques et al., 2022) in the upper row, where $\overline{1/32^{\circ}}$ represents filtered and coarse-grained high-resolution simulation. Impact of the ANN parameterization with local dimensional scaling (Eq. (11)) online at resolution $1/4^{\circ}$ in the lower row. We consider three depth-integrated metrics: difference (denoted as Δ) in Eddy Kinetic Energy (EKE) (left column); diagnosed and predicted online upscale kinetic energy transfer (center column) (positive values represent backscatter); difference in Available Potential Energy (APE) (right column). All metrics are averaged over 160 snapshots corresponding to the last 800 days of the simulations.

5.2 Online evaluation in the MOM6 ocean model

We use all available depths and grid resolutions shown in Figure 1(d) for training to make the implemented ANN parameterization (Eq. (11)) less tied to any specific resolution or depth. The retrained, smaller ANN (see Section 4.3) exhibits a slightly lower offline skill (R^2) than the version described earlier, on average, by 0.1 (Figure S5 in SI).

5.2.1 Idealized configuration NeverWorld2

279

We first consider an idealized adiabatic ocean configuration NW2, which generates various circulation patterns similar to the global ocean but allows us to isolate the effect of mesoscale eddies. Our goal is to show that the impact of the ANN parameterization on the flow is similar to that of increasing the horizontal resolution.

Mesoscale eddies extract available potential energy, APE= $\frac{\rho}{2} \sum_{k} g'_{k} (\eta_{k}^{2} - (\eta_{k}^{\text{ref}})^{2}),$ 284 from the mean flow, which is then converted into the eddy kinetic energy, $\text{EKE} = \frac{\rho}{2} (\overline{|\mathbf{u}^2|}^t -$ 285 $|\overline{\mathbf{u}}^t|^2$) (Salmon, 1980). Here, $\overline{(\cdot)}^t$ is the temporal averaging, ρ is the density, g'_k is the re-286 duced gravity of k-th isopycnal interface, η_k is the interface height and η_k^{ref} is the state 287 of rest with flat isopycnals. At an eddy-permitting resolution $(1/4^{\circ})$, this energy path-288 way is partially unresolved (Jansen & Held, 2014; Mana & Zanna, 2014; Juricke et al., 289 2019; Loose, Bachman, et al., 2023). As a result, the coarse ocean model has too low EKE 290 and too large APE when compared to the filtered and coarse-grained high-resolution sim-291 ulation, denoted as $1/32^{\circ}$ (Figure 2(a,c)). However, Figure 2(a) suggests that the miss-292 ing eddies can be nominally resolved on the coarse grid. Traditional backscatter param-293 eterizations are designed to directly reduce this EKE bias by energizing the resolved ed-294 dies, resulting in additional extraction of APE (Jansen & Held, 2014; Yankovsky et al., 295 2024).296

Eddy backscatter is diagnosed when the kinetic energy transfer produced by the 297 subfilter forcing (Eq. (3)) is predominantly positive (upscale), as shown in Figure 2(b). 298 We verified that our ANN parameterization accurately predicts the eddy backscatter of-299 fline (Figure S2 in SI), suggesting reasonable generalization capabilities of our approach. 300 In Figure 2(e), we show a more challenging task – the prediction of the eddy backscat-301 ter online once the ANN is coupled to the coarse ocean model. The online prediction of 302 eddy backscatter grossly resembles the diagnosed data shown in Figure 2(b), although 303 there are slight differences caused by the difference in distributions of input features. 304

The kinetic energy injection from the ANN parameterization leads to an increase 305 in EKE that aligns with the high-resolution data, in particular in the ACC (Antarctic 306 circumpolar current) region $(40^{\circ}S-60^{\circ}S)$, near the western boundaries, and in the sub-307 tropics $(20^{\circ}S - 20^{\circ}N)$, see Figure 2(d). However, the EKE increase in western bound-308 ary current extension $(40^{\circ}N, 10^{\circ}E-20^{\circ}E)$ and subpolar gyre $(50^{\circ}N-70^{\circ}N)$ is smaller 309 than expected from the high-resolution simulation. The spatial pattern of APE reduc-310 tion in the parameterized simulation is close to that produced by increasing horizontal 311 resolution (Figure 2(f)). The APE is predominantly reduced in the Southern Ocean and 312 ACC regions $(40^{\circ}\text{S} - 70^{\circ}\text{S})$, followed by APE reduction in gyres $(20^{\circ}\text{N} - 60^{\circ}\text{N}, 20^{\circ}\text{S} - 60^{\circ}\text{N})$ 313 40° S). Local patches of APE increase in the higher resolution model (Figure 2(c)) cor-314 respond to enhanced horizontal recirculation and are reproduced by the ANN param-315 eterization, but less accurately compared to the diagnosed APE reduction. 316

Consequences of APE reduction include flattening of isopycnals and improving the structure of isopycnal interfaces across multiple cross-sections (Figure S3 in SI), along with a weakening of ACC transport through the Drake Passage (Table S3 in SI).

Figure 3. Online evaluation of the ANN parameterization in the global ocean-ice model OM4 (Adcroft et al., 2019) at eddy-permitting resolution $(1/4^{\circ})$. The following depth-integrated diagnostics are averaged over one year (2003): (a) upscale kinetic energy transfer predicted by the ANN parameterization online, (b) difference in Eddy kinetic energy (EKE), (c) difference in Available potential energy (APE). The integrated percentage change in EKE and APE relative to the control simulation is shown for five ocean basins.

320 5.2.2 Global ocean-sea-ice model OM4

We next evaluate the ANN parameterization in the global ocean model OM4. Unlike in the idealized configuration, the interaction of many physical processes in driving the circulation in the global ocean model impede our ability to directly isolate the effect of mesoscale eddies (Ferrari & Wunsch, 2009; Lévy et al., 2010). Building on the dynamical expectations established in the idealized NW2 configuration, our goal is to assess whether the global ocean model exhibits similar response patterns to the eddy parameterization.

The prediction of the kinetic energy injection by the ANN parameterization on-328 line is shown in Figure 3(a). Similarly to the idealized configuration, the kinetic energy 329 is injected in the subtropical gyres, near the western boundaries, and occasionally in the 330 ACC region. The energy injection is accompanied by an increase of the EKE in the same 331 332 locations, see Figure 3(b). However, compared to the pattern found in an idealized configuration, the EKE decrease appears more frequently: along topographic features in the 333 subpolar gyres of the North Atlantic and North Pacific oceans, and occasionally in the 334 ACC region. The decrease of EKE in these regions is due to a shift or weakening of the 335 mean currents, potentially as a result of the removal of kinetic energy by the ANN pa-336 rameterization along the lateral boundaries, changes in deep water formation, and/or 337 changes in global overturning circulation. The complexity of the model prohibits us from 338 identifying a single mechanism. 339

Similarly to the idealized configuration, APE is primarily reduced in the Southern Ocean (-12%), with minor APE reductions observed in the Subpolar Gyres of the North Atlantic and North Pacific oceans (Figure 3(c)). APE is additionally reduced in the Arctic Ocean despite the lack of increased eddy activity in this region. However, its relative change is moderately small (-2%).

We assessed whether the offline performance of the ANN parameterization correlates with the online results (Figure S5 in SI). We found that using spatially non-local features on a 3×3 stencil, as in this study, is important for achieving higher offline skill in CM2.6 and improved energetics in OM4 compared to a pointwise ANN parameterization. However, increasing the number of neurons, which also contributes to the offline skill, has a smaller impact on the energetics.

We note that the evaluation presented in this section is qualitative and can be strengthened by comparing the parameterized global ocean model to filtered and coarse-grained higher-resolution simulations. Such evaluation can be performed in future studies by implementing the proposed parameterization in the hierarchy of GFDL climate models, CM4X, which differ in the horizontal resolution of the ocean component (Griffies et al., 2024).

356

5.2.3 Comparison to an anti-viscosity parameterization

We confront our ANN parameterization to a traditional anti-viscosity parameter-357 ization representing mesoscale eddy effects (Jansen et al., 2015) and already tested in 358 OM4 by Chang et al. (2023). Repeating their analysis, we found that both ANN and anti-359 viscosity parameterizations reduce the regional biases in the Gulf Stream region, see Fig-360 ure S4 in SI for sea surface temperature and salinity biases. The response in other global 361 ocean circulation metrics is remarkably similar for both parameterizations as well (Fig-362 ure 4). Specifically, both parameterizations increase the globally integrated kinetic en-363 ergy by roughly the same percentage and reduce the APE by nearly the same percent-364 age. The restratification effect of mesoscale eddies leads to the reduction of the globally-365 averaged potential temperature (Griffies et al., 2015; Adcroft et al., 2019). As previously discussed, the transport through the Drake Passage is reduced in both parametrized sim-367 ulations, see also Grooms et al. (2024). Unlike in Chang et al. (2023), both parameter-368 izations weaken the Atlantic meridional circulation (AMOC). This suggests that the AMOC 369 370 response depends on the ocean model state, perhaps to a greater extent than the details of mesoscale eddy parameterizations. The response in some global metrics (ACC, AMOC, 371 globally-averaged potential temperature) does not appear to project onto the existing 372 ocean model biases. That is, both parameterized ocean simulations are less consistent 373 with the observational data than the control simulation (Figure 4). We note that our 374

Figure 4. Comparison of the ANN parameterization to the negative viscosity backscatter parameterization (Chang et al., 2023) in the global ocean-ice model OM4. Kinetic energy (KE) and Available potential energy (APE) are integrated globally. Potential temperature is averaged globally. ACC transport is computed at the Drake Passage section at 70°W, and AMOC is computed as the maximum over depth streamfunction at 26.5°N. Model output is averaged over the years 1981-2007. Observational data for potential temperature is given by World Ocean Atlas 2018 (WOA18, Locarnini et al. (2018)), for ACC transport with error bar is given by cDrake (Donohue et al., 2016), and for AMOC is given by RAPID (Cunningham et al., 2007) averaged over 2004-2021 years with error bar showing interannual standard deviation.

goal was to improve the representation of mesoscale eddy processes. Bias reduction is
not guaranteed due to compensating model errors from other parameterizations and remains an important direction for future work. A full recalibration of the ocean model
may be necessary, particularly for physical processes competing with mesoscale eddies
in determining average potential temperature and the strength of the ACC and AMOC.

380 6 Discussion

We address the generalization issue of ANN parameterizations of mesoscale eddies 381 by embedding physics constraints into the inputs, outputs, and parametrization itself. 382 The Buckingham (1914)'s Pi-theorem and dimensional analysis are invoked to obtain lo-383 cal normalization coefficients. The ANN parameterization with local dimensional scal-384 ing significantly outperforms the ANN with fixed normalization coefficients offline, demon-385 strating superior generalization to unseen grid resolutions and depths in the global ocean 386 data CM2.6. A general algorithm for constructing dimensional scaling, which can be ap-387 plied to other neural-network parameterizations, is presented. 388

The proposed ANN parameterization with dimensional scaling is successfully tested 389 online in the GFDL MOM6 ocean model. It accurately predicts upscale kinetic energy 390 transfer, despite many challenges presented by online implementation. The parameter-391 ization improves the energy pathways by energizing the resolved eddies and reducing APE, 392 consistent with the expected restratification effects of mesoscale eddies. These improve-393 ments hold across idealized (NW2) and global ocean (OM4) configurations, with the most 394 pronounced APE reduction occurring in the Southern Ocean. The ANN achieves com-395 parable online performance to an existing backscatter parameterization (Jansen et al., 396

³⁹⁷ 2015; Chang et al., 2023) in OM4, and does not require significant retuning between ide-³⁹⁸ alized and global setups.

We demonstrate the improved or similar performance of the ANN parameteriza-399 tion in NW2 compared to existing backscatter schemes (Yankovsky et al., 2024; Perezhogin, 400 Zhang, et al., 2024) across different resolutions $(1/3^\circ - 1/6^\circ)$, see Table S2 in SI). At $1/2^\circ$, 401 however, the ANN offers no clear improvement compared to the control simulation, likely 402 due to less resolved eddies and stronger viscosity. At coarser resolutions ($\sim 1^{\circ}$), the sub-403 filter momentum fluxes vanish as the Rossby radius is unresolved (Figure S6 in SI). At 404 such coarse resolutions, combining the ANN with bulk parameterizations or online learn-405 ing approaches may help (Maddison, 2024; Shankar et al., 2025), along with parameter-406 izations explicitly extracting APE (Bachman, 2019; Jansen et al., 2019; Grooms et al., 407 2024; Perezhogin, Balakrishna, & Agrawal, 2024; Balwada et al., 2025). 408

Additional work is needed to enhance data-driven parameterizations beyond the 409 performance of traditional parameterizations in realistic global configurations. Both pa-410 rameterization approaches exhibit substantial departures from observations and contribute 411 comparably to persistent model biases. This highlights the potential for improving pa-412 rameterization schemes, evaluation metrics, and model calibration in ocean modeling. 413 Looking ahead, the generalization issue addressed in this study has immediate implica-414 tions for climate models, where parameterizations must remain reliable under changing 415 conditions. 416

417 Open Research Section

The training algorithm, plots, ANN weights, implemented parameterization and MOM6 setups are available at Perezhogin (2025). The training dataset, offline skill, and simulation data are available at Perezhogin et al. (2025). For high-resolution NW2 simulation data, see Marques et al. (2022). Observational products can be found: WOA18 (Garcia et al., 2019) and RAPID (Moat et al., 2025).

423 Acknowledgments

This project is supported by Schmidt Sciences, LLC. LZ was also partially funded through 424 NOAA NA19OAR4310364-T1-01. This research was also supported in part through the 425 NYU IT High Performance Computing resources, services, and staff expertise. This re-426 search used resources of the National Energy Research Scientific Computing Center, a 427 DOE Office of Science User Facility supported by the Office of Science of the U.S. De-428 partment of Energy under Contract No. DE-AC02-05CH11231 using NERSC award BER-429 ERCAP0032655. The authors would like to thank the M^2 LINES team, in particular, Dhruv 430 Balwada, Alex Connolly, and Nora Loose, and also Wenda Zhang and Aviral Prakash 431 for helpful comments and discussion. We also thank the anonymous reviewers for their 432 helpful suggestions, which have helped improve the manuscript. 433

434 **References**

- Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., ...
 others (2019). The GFDL global ocean and sea ice model OM4.0: Model
 description and simulation features. Journal of Advances in Modeling Earth
 Systems, 11(10), 3167–3211. doi: https://doi.org/10.1029/2019MS001726
- Agdestein, S. D., & Sanderse, B. (2025). Discretize first, filter next: Learning divergence-consistent closure models for large-eddy simulation. Journal of Computational Physics, 522, 113577. doi: https://doi.org/10.1016/
 j.jcp.2024.113577
- Bachman, S. D. (2019). The GM + E closure: A framework for coupling backscatter with the Gent and McWilliams parameterization. Ocean Modelling, 136, 85–

445	106. doi: https://doi.org/10.1016/j.ocemod.2019.02.006		
446	Bachman, S. D., Fox-Kemper, B., & Pearson, B. (2017). A scale-aware subgrid		
447	model for quasi-geostrophic turbulence. Journal of Geophysical Research:		
448	Oceans, 122(2), 1529–1554. doi: https://doi.org/10.1002/2016JC012265		
449	Balwada, D., Perezhogin, P., Adcroft, A., & Zanna, L. (2025). Design and imple-		
450	mentation of a data-driven parameterization for mesoscale thickness fluxes.		
451	Authorea Preprints.		
452	Barenblatt, G. I. (1996). Scaling. self-similarity. and intermediate asymptotics: di-		
453	mensional analysis and intermediate asymptotics (No. 14). Cambridge Univer-		
454	sitv Press.		
455	Beucler, T., Gentine, P., Yuval, J., Gupta, A., Peng, L., Lin, J., others (2024).		
456	Climate-invariant machine learning. Science Advances, 10(6), eadi7250. doi:		
457	https://doi.org/10.1126/sciady.adi7250		
458	Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learn-		
459	ing (Vol. 4) (No. 4). Springer.		
460	Bolton T & Zanna L (2019) Applications of Deep Learning to Ocean Data In-		
400	ference and Suborid Parameterization Journal of Advances in Modeling Earth		
401	Sustems 11(1) 376–399 doi: https://doi.org/10.1029/2018MS001472		
402	Bridgman P W (1922) Dimensional analysis Vale university press		
403	Buckingham E (1914) On physically similar systems: illustrations of the use of di-		
464	monstand counting <i>Physical review</i> /(4) 345 doi: https://doi.org/10.1103/		
465	$\frac{1}{2} \frac{1}{2} \frac{1}$		
466	Chang C V Adgraft A Zanna I Hallborg B & Criffics S M (2023) Romoto		
467	vorsus local impacts of onergy backscatter on the North Atlantic SST biases in		
468	a global accord model — Coordinate Research Letters 50(21) a2022CI 105757		
469	doj: https://doj.org/10.1020/2023CI 105757		
470	Christenson II. & Zanna I. (2022) Dependenciation in Weather and Climate		
471	Modela Orford University Press doi: https://doi.org/10.1002/acrofore/		
472	0.1002010020820 012 026		
473	Christeneules C. Lener Comer I. Develor T. Cohen V. Kowerweit: C. Dun		
474	han O. D. & Schneiden T. (2024) Online learning of entroipment elegande		
475	in a hybrid machine learning parameterization — Learning of Advances in Med		
476	aling Farth Systems 16(11) 2024MS004485 doi: https://doi.org/10.1020/		
477	2024MS004485 doi: https://doi.org/10.1029/ 2024MS004485		
478	Connelly A Chang V Welters D Wang D Vy D & Contine D (2025) Deep		
479	Connony, A., Oneng, Y., Watters, R., Wang, R., Yu, R., & Gentine, P. (2025). Deep		
480	therea Drennints doi: https://doi.org/10.22541/eggoen.172860578.80400701/		
481	utorea Freprintis. doi: https://doi.org/10.22541/essoar.175809578.80400701/		
482	Cuppingham S. A. Kangow T. Paymon D. Pavingon M. O. Johng W. F.		
483	Marotzka I., athara (2007) Temporal variability of the Atlantic marid		
484	Marotzke, J., others (2007). Temporal variability of the Atlantic merid- ional eventuming circulation at 26.5 N $circulation = 217(5840)$ 025 028 doi:		
485	bilar overturning circulation at 20.5 N. science, $517(5640)$, $955-958$. doi: https://doi.org/10.1126/acience.1141204		
486	Develope K A Transford K Wette D D Childishing M D & Chanalin		
487	Dononue, K. A., Iracey, K., Watts, D. R., Chidichimo, M. P., & Chereskin,		
488	in Dualez Descenter Combusied Descente Lettere (2020) 11 700		
489	In Drake Passage. Geophysical Research Letters, $43(22)$, 11–700. doi: https://doi.org/10.1002/2016CL070210		
490	$\frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{100000} = \frac{1}{1000000} = \frac{1}{10000000000000000000000000000000000$		
491	Ferrari, R., & Wunsch, C. (2009). Ocean circulation kinetic energy: Reservoirs,		
492	sources, and sinks. Annual Review of Fluid Mechanics, 41, 253–282. doi:		
493	$\frac{1}{10000000000000000000000000000000000$		
494	rox-Kemper, B., Adcrott, A., Boning, C. W., Chassignet, E. P., Curchitser, E., Dan-		
495	abasoglu, G., others (2019). Challenges and prospects in ocean circulation		
496	models. Frontiers in Marine Science, b, 65. doi: https://doi.org/10.3389/		
497	mars.2019.00005		
498	Garcia, H. E., Boyer, T. P., Baranova, O. K., et al. (2019). World Ocean Atlas		
499	2018: Product Documentation [Dataset]. Retrieved from https://www.ncei		

500	.noaa.gov/data/oceans/woa/WOA18/DATA/ doi: https://doi.org/10.25923/
501	tzyw-rp36
502	Griffies, S. M. (2018). Fundamentals of ocean climate models. Princeton University
503	press. doi: https://doi.org/10.2307/i.ctv301gzg
504	Griffies S M Adcroft A Beadling R L Bushuk M Chang C-Y Drake
505	H F others (2024) The GFDL-CM4X climate model hierarchy
505	Part I: model description and thermal properties Authorea Preprinte doi:
506	https://doi.org/10.225/11/ossonr.172282145.52065100/y1
507	Chiffer C. M. Winter M. Anderson W. C. Denson D. Delsenth T. I. Defen
508	Grimes, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Durour,
509	C. O., others (2015). Impacts on ocean neat from transient mesoscale
510	eddies in a hierarchy of climate models. Journal of Climate, 28(3), 952–977.
511	doi: https://doi.org/10.1175/JCLI-D-14-00353.1
512	Grooms, I., Agarwal, N., Marques, G. M., Pegion, P., & Yassin, H. (2024). The
513	Stochastic GM+ E closure: A framework for coupling stochastic backscatter
514	with the Gent and McWilliams parameterization. <i>Authorea Preprints</i> . doi:
515	https://doi.org/10.22541/essoar.172118408.85625257/v1
516	Grooms, I., Loose, N., Abernathey, R., Steinberg, J., Bachman, S. D., Marques,
517	G. M., Yankovsky, E. (2021). Diffusion-based smoothers for spatial filtering
518	of gridded geophysical data. Journal of Advances in Modeling Earth Systems,
519	13(9), e2021MS002552. doi: https://doi.org/10.1029/2021MS002552
520	Guan, Y., Subel, A., Chattopadhyay, A., & Hassanzadeh, P. (2022). Learning
521	physics-constrained subgrid-scale closures in the small-data regime for sta-
522	ble and accurate LES. <i>Physica D: Nonlinear Phenomena</i> , 133568. doi:
523	https://doi.org/10.1016/j.physd.2022.133568
524	Guillaumin, A. P., & Zanna, L. (2021). Stochastic-deep learning parameterization
525	of ocean momentum forcing. Journal of Advances in Modeling Earth Systems.
526	13(9), e2021MS002534, doi: https://doi.org/10.1029/2021MS002534
527	Gultekin, C., Subel, A., Zhang, C., Leibovich, M., Perezhogin, P., Adcroft, A.,
528	Zanna, L. (2024). An analysis of deep learning parameterizations
529	for ocean subgrid eddy forcing. arXiv preprint arXiv:2/11.0660/. doi:
530	https://doi.org/10.48550/arXiv.2411.06604
531	Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The ele-
532	ments of statistical learning: data mining, inference, and prediction (Vol. 2).
533	Springer
535	Hewitt H T Roberts M Mathiot P Biastoch A Blockley E Chassignet
534	F. P. others (2020) Resolving and parameterising the ocean mesoscale in
535	$L.1.1, \ldots$ others (2020). Resolving and parameterising the occar mesoscale in ourth system models <i>Current Climate Change Reports</i> 6(4) 137–152 doi:
536	betting $/doi \log /10, 1007/c40641, 020, 00164, w$
537	Langer M.E. Adoreft A. Khani C. & Kong H. (2010) Toward an energy isolity
538	Jansen, W. F., Aucroit, A., Khain, S., & Kong, H. (2019). Toward an energetically
539	consistent, resolution aware parameterization of ocean mesoscale endes. $Jour-$
540	nul of Advances in Modeling Earth Systems, $11(8)$, $2844-2800$. doi: https://doi
541	.002/10.1029/20190010001000
542	Jansen, M. F., & Held, I. M. (2014). Parameterizing subgrid-scale eddy effects using
543	energetically consistent backscatter. Ocean Modelling, 80, 36–48. doi: https://
544	doi.org/10.1016/j.ocemod.2014.06.002
545	Jansen, M. F., Held, I. M., Adcroft, A., & Hallberg, R. (2015). Energy budget-based
546	backscatter in an eddy permitting primitive equation model. Ocean Modelling,
547	94, 15–26. doi: https://doi.org/10.1016/j.ocemod.2015.07.015
548	Juricke, S., Danilov, S., Kutsenko, A., & Oliver, M. (2019). Ocean kinetic
549	energy backscatter parametrizations on unstructured grids: Impact on
550	mesoscale turbulence in a channel. Ocean Modelling, 138, 51–67. doi:
551	https://doi.org/10.1016/j.ocemod.2019.03.009
552	Kang, M., Jeon, Y., & You, D. (2023). Neural-network-based mixed subgrid-scale
553	model for turbulent flow. Journal of Fluid Mechanics, 962, A38. doi: https://
554	doi.org/10.1017/jfm.2023.260

555 556	Kashinath, K., Mustafa, M., Albert, A., Wu, J., Jiang, C., Esmaeilzadeh, S., others (2021). Physics-informed machine learning: case studies for weather
557	and climate modelling. Philosophical Transactions of the Royal Society A,
558	379(2194), 20200093. doi: https://doi.org/10.1098/rsta.2020.0093
559	Large, W., & Yeager, S. (2009). The global climatology of an interannually varying
560	air-sea flux data set. Climate dynamics, 33, 341–364. doi: https://doi.org/10
561	.1007/s00382-008-0441-3
562	Leith, C. (1996). Stochastic models of chaotic systems. <i>Physica D: Nonlinear Phe-</i>
563	nomena, $98(2-4)$, $481-491$. doi: https://doi.org/10.1016/0167-2789(96)00107
564	
565	Lévy, M., Klein, P., Tréguier, AM., Iovino, D., Madec, G., Masson, S., & Taka-
566	nasni, K. (2010). Modulications of gyre circulation by sub-mesoscale O_{reserv} Moduling $2/(1,2)$, 1,15 doi: https://doi.org/10.1016/
567	i ocemod 2010 04 001
568	Li H Xie I Zhang C Zhang V & Zhao V (2025) A transformer-based
569	convolutional method to model inverse cascade in forced two-dimensional tur-
570	bulence Journal of Computational Physics 520 113475 doi: https://doi.org/
572	10.1016/i.jcp.2024.113475
573	Ling, J., Kurzawski, A., & Templeton, J. (2016). Reynolds averaged turbulence
574	modelling using deep neural networks with embedded invariance. <i>Journal of</i>
575	Fluid Mechanics, 807, 155–166. doi: https://doi.org/10.1017/jfm.2016.615
576	Locarnini, M., Mishonov, A., Baranova, O., Boyer, T., Zweng, M., Garcia, H.,
577	others (2018). World ocean atlas 2018, volume 1: Temperature. NOAA Atlas
578	NESDIS.
579	Loose, N., Abernathey, R., Grooms, I., Busecke, J., Guillaumin, A., Yankovsky, E.,
580	\dots others (2022). GCM-filters: A Python package for diffusion-based spatial
581	filtering of gridded data. Journal of Open Source Software, $7(70)$.
582	Loose, N., Bachman, S., Grooms, I., & Jansen, M. (2023). Diagnosing scale-
583	dependent energy cycles in a high-resolution isopycnal ocean model. Jour-
584	nal of Physical Oceanography, 53(1), 157–176. doi: https://doi.org/10.1175/
585	JPO-D-22-0083.1
586	Loose, N., Marques, G. M., Adcroft, A., Bachman, S., Griffies, S. M., Grooms, I., Longon, M. F. (2022) Comparing two parameterizations for the re-
587	stratification effect of mesoscale addies in an isopychal according to the le-
588	nal of Advances in Modeling Earth Systems 15(12) e2022MS003518
590	https://doi.org/10.1029/2022MS003518
591	Lund, T. S., & Novikov, E. (1993). Parameterization of subgrid-scale stress by the
592	velocity gradient tensor. Annual Research Briefs, 1992.
593	Maddison, J. R. (2024). Online learning in idealized ocean gyres. arXiv preprint
594	arXiv:2412.06393. doi: https://doi.org/10.48550/arXiv.2412.06393
595	Mana, P. P., & Zanna, L. (2014). Toward a stochastic parameterization of ocean
596	mesoscale eddies. Ocean Modelling, 79, 1–20. doi: https://doi.org/10.1016/j
597	.ocemod.2014.04.002
598	Marques, G. M., Loose, N., Yankovsky, E., Steinberg, J. M., Chang, CY., Bhamidi-
599	pati, N., others (2022). NeverWorld2: An idealized model hierarchy to in-
600	vestigate ocean mesoscale eddies across resolutions. Geoscientific Model Devel-
601	opment, 15(17), 6567–6579. doi: https://doi.org/10.5194/gmd-15-6567-2022
602	Marques, G. M., et al. (2022). Simulation data in idealized ocean configuration Nev-
603	erworld2 [Dataset]. UCAR/NCAR - CISL - CDP. doi: https://doi.org/10
604	.20024/1130-eV/1
605	Maulik, K., & San, U. (2017). A neural network approach for the blind deconvo-
606	https://doi.org/10.1017/ifm.2017.627
607	Maulik R San O Rasheed A & Vodula P (2010) Subarid modelling for two
500	dimensional turbulence using neural networks Iowrnal of Fluid Mechanice
009	

610	858, 122–144. doi: https://doi.org/10.1017/jfm.2018.770
611	Meneveau, C., & Katz, J. (2000). Scale-invariance and turbulence models for large-
612	eddy simulation. Annual Review of Fluid Mechanics, 32(1), 1–32. doi: https://
613	doi.org/10.1146/annurev.fluid.32.1.1
614	Moat, B., DA, S., et al. (2025). Atlantic meridional overturning circulation
615	observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturn-
616	ing Circulation and Heatflux Array-Western Boundary Time Series) ar-
617	ray at 26N from 2004 to 2023 (v2023.1a) [Dataset]. British Oceano-
618	graphic Data Centre - Natural Environment Research Council, UK. doi:
619	https://doi.org/10.5285/33826d6e-801c-b0a7-e063-7086abc0b9db
620	Pawar, S., San, O., Rasheed, A., & Vedula, P. (2020). A priori analysis on deep
621	learning of subgrid-scale parameterizations for kraichnan turbulence. <i>Theoreti</i> -
622	cal and Computational Fluid Dynamics, 34(4), 429–455. doi: https://doi.org/
623	10.1007/s00162-019-00512-z
624	Perezhogin P (2025) Generalizable neural-network parameterization of mesoscale
625	eddies in idealized and alobal ocean models [Software] Zenodo doi: https://doi
625	org/10.5281/zenodo.16056926
607	Perezhorin P Adcroft A & Zanna L (2025) Generalizable neural-network
628	parameterization of mesoscale eddies in idealized and alobal ocean models
620	[Dataset] Zenodo doi: https://doi.org/10.5281/zenodo.16058005
029	Porozhogin P. Balakrishna A. & Agrawal B. (2024) Large addy simulation of
630	ocoan mososcala addias In Proceedings of the Summer Program 2021 Center
631	for Turbulance Research Stanford University (p. 507, 516) Botrioved from
632	https://arviv.org/abs/2501_05357
633	Derezhorin D. Zhang, C. Aderoff, A. Formandez Cranda, C. & Zanna, I. (2024)
634	A stable implementation of a data driven scale aware mesoscale perpendicular
635	tion Lowrool of Advances in Modeling Farth Systems 16(10) 2023MS004104
636	doi: https://doi.org/10.1020/2022MS004104
637	doi: $\operatorname{https://doi.org/10.1029/2020M3004104}$
638	Pope, S. D. (1975). A more general ellective-viscosity hypothesis. <i>Journal of Fluid</i> Machanica $\mathcal{I}(20, 221, 240, doi: https://doi.org/10.1017/S0022112075002222$
639	$\frac{Mechanics}{12}, \frac{72}{2}, \frac{531-540}{2}, \frac{100}{10}, \frac{1000}{10}, $
640	mid strong modeling in the strong note signs from for long oddy signalation
641	grid stress modeling in the strain-rate eigenframe for large eddy simulation.
642	bttps://doi.org/10.1016/j.cmp.2022.115457
643	Declarch A Jangen K E & Eveng J A (2024) Investigat data driven subgrid
644	Prakasn, A., Jansen, K. E., & Evans, J. A. (2024). Invariant data-driven subgrid
645	stress modeling on anisotropic grids for large eddy simulation. <i>Computer Meth-</i>
646	oas in Applied Mechanics and Engineering, 422, 110807. doi: https://doi.org/
647	10.1010/J.cma.2024.110807
648	Reissmann, M., Hassiberger, J., Sandberg, R. D., & Klein, M. (2021). Appli-
649	cation of gene expression programming to a-posteriori les modeling of a
650	taylor green vortex. Journal of Computational Physics, 424, 109859. doi:
651	nttps://doi.org/10.1016/j.jcp.2020.109859
652	Ross, A., Li, Z., Perezhogin, P., Fernandez-Granda, C., & Zanna, L. (2023).
653	Benchmarking of machine learning ocean subgrid parameterizations in an
654	Idealized model. Journal of Advances in Modeling Earth Systems, $15(1)$,
655	e2022MS003258. doi: https://doi.org/10.1029/2022MS003258
656	Salmon, R. (1980). Baroclinic instability and geostrophic turbulence. <i>Geophys-</i>
657	ical & Astrophysical Fluid Dynamics, 15(1), 167–211. doi: https://doi.org/10
658	.1080/03091928008241178
659	Sane, A., Reichl, B. G., Adcrott, A., & Zanna, L. (2023). Parameterizing vertical
660	mixing coefficients in the ocean surface boundary layer using neural networks.
661	Journal of Advances in Modeling Earth Systems, $15(10)$, e2023MS003890. doi:
662	nttps://doi.org/10.1029/2023MS003890
663	Schneider, T., Leung, L. R., & Wills, R. C. (2024). Opinion: Optimizing
664	climate models with process knowledge, resolution, and artificial intelli-

665	gence. Atmospheric Chemistry and Physics, $24(12)$, $7041-7062$. doi:
666	https://doi.org/10.5194/acp-24-7041-2024
667	Shankar, V., Chakraborty, D., Viswanathan, V., & Maulik, R. (2025). Differentiable
668	turbulence: Closure as a partial differential equation constrained optimization.
669	Physical Review Fluids, $10(2)$, 024605 .
670	Smagorinsky, J. (1963). General circulation experiments with the primitive equa-
671	tions: I. the basic experiment. Monthly weather review, $91(3)$, $99-164$. doi:
672	https://doi.org/10.1175/1520-0493(1963)091%3C0099: GCEWTP%3E2.3.CO;
673	2
674	Srinivasan, K., Chekroun, M. D., & McWilliams, J. C. (2024). Turbulence closure
675	with small, local neural networks: Forced two-dimensional and β -plane flows.
676	Journal of Advances in Modeling Earth Systems, 16(4), e2023MS003795. doi:
677	https://doi.org/10.1029/2023MS003795
678	Wang, Y., Yuan, Z., Wang, X., & Wang, J. (2022). Constant-coefficient spatial
679	gradient models for the sub-grid scale closure in large-eddy simulation of tur-
680	bulence. <i>Physics of Fluids</i> , 34(9). doi: https://doi.org/10.1063/5.0101356
681	Wang, Y., Yuan, Z., Xie, C., & Wang, J. (2021). Artificial neural network-based
682	spatial gradient models for large-eddy simulation of turbulence. AIP Advances,
683	11(5). doi: https://doi.org/10.1063/5.0053590
684	Xie, C., Wang, J., & E, W. (2020). Modeling subgrid-scale forces by spatial arti-
685	ficial neural networks in large eddy simulation of turbulence. <i>Physical Review</i>
686	Fluids, 5(5), 054606. doi: https://doi.org/10.1103/PhysRevFluids.5.054606
687	Yan, F. E., Mak, J., & Wang, Y. (2024). On the choice of training data for machine
688	learning of geostrophic mesoscale turbulence. Journal of Advances in Mod-
689	eling Earth Systems, 16(2), e2023MS003915. doi: https://doi.org/10.1029/
690	2023MS003915
691	Yankovsky, E., Bachman, S., Smith, K. S., & Zanna, L. (2024). Vertical struc-
692	ture and energetic constraints for a backscatter parameterization of ocean
693	mesoscale eddies. Journal of Advances in Modeling Earth Systems, 16(7),
694	e2023MS004093. doi: https://doi.org/10.1029/2023MS004093
695	Zanna, L., & Bolton, T. (2020). Data-driven equation discovery of ocean mesoscale
696	closures. Geophysical Research Letters, 47(17), e2020GL088376. doi: https://
697	doi.org/10.1029/2020GL088376
698	Zhang, U., Perezhogin, P., Gultekin, C., Adcroft, A., Fernandez-Granda, C., &
699	Zanna, L. (2023). Implementation and evaluation of a machine learned
700	mesoscale eddy parameterization into a numerical ocean circulation model.
701	Journal of Advances in Modeling Earth Systems, 15(10), e2023MS003697. doi:

⁷⁰² https://doi.org/10.1029/2023MS003697

Supporting Information for "Generalizable neural-network parameterization of mesoscale eddies in idealized and global ocean models"

Pavel Perezhogin¹, Alistair Adcroft³, Laure Zanna^{1,2}

¹Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

²Center for Data Science, New York University, New York, NY, USA

³Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA

Contents of this file

- 1. Text S1 to S4
- 2. Tables S1 to S3
- 3. Figures S1 to S6

Text S1. Known parameterizations as a special case of dimensional scaling

:

Here, we show that enforcing the dimensional scaling constraint to the ANN parameterization is not too restrictive and admits multiple known parameterizations as a special case with continuous functional representations (see Prakash, Jansen, and Evans (2022) for discussion). We also show that these functional representations do not depend on the normalization factor ($||\mathbf{X}||_2^2$) explicitly. This suggests that the choice of the normalization factor primarily affects the range of inputs to the neural network, but not the function to be learnt.

We denote the components of the predicted momentum fluxes as follows:

$$\widehat{\mathbf{T}}(\mathbf{X}, \Delta) = \Delta^2 ||\mathbf{X}||_2^2 \text{ANN}_{\theta}(\mathbf{X}/||\mathbf{X}||_2) \equiv$$
(1)

$$\Delta^{2} ||\mathbf{X}||_{2}^{2} \begin{pmatrix} \operatorname{ANN}_{\theta}^{xx}(\mathbf{x}) & \operatorname{ANN}_{\theta}^{xy}(\mathbf{x}) \\ \operatorname{ANN}_{\theta}^{xy}(\mathbf{x}) & \operatorname{ANN}_{\theta}^{yy}(\mathbf{x}) \end{pmatrix},$$
(2)

where the vector of input features is

$$\mathbf{X} = \begin{pmatrix} [\overline{\sigma}_S] \uparrow_9 \\ [\overline{\sigma}_T] \uparrow_9 \\ [\overline{\omega}] \uparrow_9 \end{pmatrix} \in \mathbb{R}^{27}$$
(3)

and $\mathbf{x} = \mathbf{X}/||\mathbf{X}||_2$.

Smagorinsky parameterization

We first consider a Smagorinsky (1963) subgrid parameterization:

$$\widehat{\mathbf{T}} = C_S \Delta^2 \sqrt{\overline{\sigma}_S^2 + \overline{\sigma}_T^2} \begin{pmatrix} \overline{\sigma}_T & \overline{\sigma}_S \\ \overline{\sigma}_S & -\overline{\sigma}_T \end{pmatrix}.$$
(4)

This subgrid model can be given in the form of Eq. (2) if ANN parameterizes the following functions:

$$ANN_{\theta}^{xx}(\mathbf{x}) = C_S x_{14} \sqrt{x_5^2 + x_{14}^2}$$
(5)

$$ANN_{\theta}^{yy}(\mathbf{x}) = -ANN_{\theta}^{xx}(\mathbf{x})$$
(6)

Х - З

$$ANN_{\theta}^{xy}(\mathbf{x}) = C_S x_5 \sqrt{x_5^2 + x_{14}^2},$$
(7)

where x_5 and x_{14} represent components of the non-dimensional vector \mathbf{x} which are equal to $\overline{\sigma}_S/||\mathbf{X}||_2$ and $\overline{\sigma}_T/||\mathbf{X}||_2$ in the center of 3×3 spatial stencil, respectively. The derived functions are continuous on a bounded domain ($|x_i| \leq 1$), and thus they can be easily learned with the ANN. The functional representations of the parameterizations derived below are continuous as well.

:

Zanna-Bolton 2020 parameterization

Similarly, we can show that Zanna and Bolton (2020) parameterization

$$\widehat{\mathbf{T}} = -\gamma \Delta^2 \begin{pmatrix} -\overline{\omega} \,\overline{\sigma}_S \ \overline{\omega} \,\overline{\sigma}_T \\ \overline{\omega} \,\overline{\sigma}_T \ \overline{\omega} \,\overline{\sigma}_S \end{pmatrix} - \frac{1}{2} \gamma \Delta^2 (\overline{\omega}^2 + \overline{\sigma}_T^2 + \overline{\sigma}_S^2) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(8)

can be represented as follows:

$$ANN_{\theta}^{xx}(\mathbf{x}) = \gamma x_5 x_{23} - \frac{1}{2} \gamma (x_5^2 + x_{14}^2 + x_{23}^2), \qquad (9)$$

$$\operatorname{ANN}_{\theta}^{yy}(\mathbf{x}) = -\gamma x_5 x_{23} - \frac{1}{2} \gamma (x_5^2 + x_{14}^2 + x_{23}^2), \tag{10}$$

$$ANN_{\theta}^{xy}(\mathbf{x}) = -\gamma x_{14} x_{23}.$$
(11)

Leith 1996 parameterization

Next, we consider Leith (1996) parameterization:

$$\widehat{\mathbf{T}} = C_L \Delta^3 |\nabla \overline{\omega}| \begin{pmatrix} \overline{\sigma}_T & \overline{\sigma}_S \\ \overline{\sigma}_S & -\overline{\sigma}_T \end{pmatrix}.$$
(12)

By approximating the gradient with central differences and assuming an isotropic and uniform grid, we obtain:

$$ANN_{\theta}^{xx}(\mathbf{x}) = \frac{1}{2}C_L x_{14}\sqrt{(x_{24} - x_{22})^2 + (x_{26} - x_{20})^2},$$
July 24, 2025, 12:01am
(13)

X - 4

$$ANN_{\theta}^{yy}(\mathbf{x}) = -ANN_{\theta}^{xx}(\mathbf{x}), \qquad (14)$$

$$ANN_{\theta}^{xy}(\mathbf{x}) = \frac{1}{2}C_L x_5 \sqrt{(x_{24} - x_{22})^2 + (x_{26} - x_{20})^2}$$
(15)

Biharmonic Smagorinsky parameterization

The biharmonic Smagorinsky subgrid model has the form:

$$\widehat{\mathbf{T}} = -C_S \Delta^4 \sqrt{\overline{\sigma}_S^2 + \overline{\sigma}_T^2} \nabla^2 \begin{pmatrix} \overline{\sigma}_T & \overline{\sigma}_S \\ \overline{\sigma}_S & -\overline{\sigma}_T \end{pmatrix}.$$
(16)

By approximating the ∇^2 operator on an isotropic and uniform grid, we obtain:

:

$$ANN_{\theta}^{xx}(\mathbf{x}) = -C_S(x_{15} + x_{13} + x_{17} + x_{11} - 4x_{14})\sqrt{x_5^2 + x_{14}^2},$$
(17)

$$ANN_{\theta}^{yy}(\mathbf{x}) = -ANN_{\theta}^{xx}(\mathbf{x}), \tag{18}$$

$$\operatorname{ANN}_{\theta}^{xy}(\mathbf{x}) = -C_S(x_6 + x_4 + x_8 + x_2 - 4x_5)\sqrt{x_5^2 + x_{14}^2}.$$
(19)

Text S2. Robustness of division by small numbers

The robustness of the parameterization with the dimensional scaling,

$$\widehat{\mathbf{T}}(\mathbf{X}, \Delta) = \Delta^2 ||\mathbf{X}||_2^2 \text{ANN}_{\theta}(\mathbf{X}/||\mathbf{X}||_2), \qquad (20)$$

at $\mathbf{X} = \mathbf{0}$ is achieved as follows. We first identify that most known parameterizations, such as Smagorinsky (1963) and Leith (1996), predict zero fluxes when the velocity gradients are zero. We enforce the same property for our parameterization by extending Eq. (20) with:

$$\widehat{\mathbf{T}}(\mathbf{X} = \mathbf{0}, \Delta) = \mathbf{0}.$$
(21)

Numerically, this property is implemented by adding a very small number $(10^{-30}s^{-1})$ to the denominator in Eq. (20).

Additionally, we ensure that Eq. (20) is continuous at $\mathbf{X} = \mathbf{0}$, that is, the corresponding limit exists and is equal to the function value (zero):

$$\lim_{\mathbf{X}\to\mathbf{0}}\widehat{\mathbf{T}}(\mathbf{X},\Delta) = \widehat{\mathbf{T}}(\mathbf{X}=\mathbf{0},\Delta) = \mathbf{0}.$$
(22)

The function ANN_{θ} is continuous as a composition of continuous activation functions (ReLU). Furthermore, for any $||\mathbf{X}||_2 > 0$, the function ANN_{θ} is evaluated on a unit sphere, which is a compact set. Therefore, the continuous function ANN_{θ} is bounded on the compact set by some constant $A(\theta)$ that depends only on the trainable parameters θ . We verify the limit (Eq. (22)) by inequality:

$$\left|\Delta^2 ||\mathbf{X}||_2^2 \text{ANN}_{\theta}(\mathbf{X}/||\mathbf{X}||_2)\right| \le A(\theta) \Delta^2 ||\mathbf{X}||_2^2 \to \mathbf{0} \text{ as } \mathbf{X} \to \mathbf{0}.$$
(23)

Text S3. Details of the training algorithm

The training dataset is created using four coarse-graining factors, selected to be similar to those used in Gultekin et al. (2024), and 10 depths (extending Gultekin et al. (2024)), see Table S1.

ANN model architecture

For offline analysis, we use an ANN, also known as a multilayer perceptron (MLP), with two hidden layers, 32 neurons each, in a total of 2051 parameters, both for parameterizations with and without dimensional scaling (see Table S1). For online implementation, the ANN model is chosen to be smaller (see Table S1): it has only a single hidden layer with 20 neurons, as in Prakash et al. (2022), with a total of 623 trainable parameters. We verified that reducing the number of neurons for online implementation does not significantly impact the response in kinetic and potential energy and the time-mean sea surface tem-

perature in short 5-year simulations in the global ocean model OM4 (Figure S5). Thus, we keep the smaller ANN for online implementation to bound its computational cost to within $\approx 10\%$ of the global ocean model runtime.

Training algorithm and boundary conditions

We train the ANN model on data from the full globe, similarly to Gultekin et al. (2024). The loss function is defined to optimize for the divergence ($\nabla \cdot$) of subfilter fluxes (**T**) similarly to Zanna and Bolton (2020) and Srinivasan, Chekroun, and McWilliams (2024). The mean squared error (MSE) loss is minimized on every 2D snapshot of subfilter forcing **S** and normalized by the corresponding l_2 -norm of **S** (Agdestein & Sanderse, 2025):

$$\mathcal{L}_{\text{MSE}} = ||(\mathbf{S} - \nabla \cdot \mathbf{\hat{T}}) \cdot m||_2^2 / ||\mathbf{S} \cdot m||_2^2, \tag{24}$$

where m is the mask of wet points. The input features (velocity gradients, \mathbf{X}) and predicted subfilter fluxes are set to zero on the land as well: $\widehat{\mathbf{T}} \equiv m \cdot \widehat{\mathbf{T}}(m \cdot \mathbf{X})$. That is, we impose zero Neumann boundary condition (Zhang et al., 2024) and free-slip boundary condition. We found that including the grid points adjacent to the land to the loss function is essential for ensuring the numerical stability of online runs. Another important design choice for online numerical stability is performing the ANN inference on the collocated, rather than on the staggered grid, similarly to Guillaumin and Zanna (2021) and Agdestein and Sanderse (2025).

The loss function (Eq. (24)) is evaluated and minimized for a total of 16000 twodimensional snapshots during training, see Table S1. We do not use any regularizations, such as weight decay, during the training of ANNs because the size of the dataset is much bigger relative to the number of trainable parameters. We verified that the offline skill on

training and testing data is very similar, suggesting that there is no overfitting, and there is no need for regularization.

Sensitivity to the random seed

The R-squared of the offline predictions of the ANN is almost insensitive to the random seed used to initialize the training algorithm. In addition, the prediction errors $\mathbf{S} - \nabla \cdot \hat{\mathbf{T}}$ are highly correlated between different seeds (as in Srinivasan et al. (2024)). We also confirmed that the kinetic energy is nearly unchanged in online two-layer Double Gyre experiments, using ANNs generated from different initializations of the training algorithm, similarly to Zhang et al. (2024). However, there is some sensitivity to the training algorithm initialization for the mean flow prediction: the response pattern in the mean flow is similar, but the response magnitude can vary by 50%. The sensitivity of the mean fields to the random seed is not apparent in the global ocean configuration OM4.

Choice of the filter scale in the training dataset

The filtering operator used is a Gaussian filter implemented in the package GCM-Filters (Grooms et al., 2021; Loose et al., 2022) with width $\overline{\Delta}$, chosen in relation to the coarse grid spacing Δ . The filter-to-grid width ratio parameter (FGR = $\overline{\Delta}/\Delta$) represents the strength of the subfilter parameterization: relatively low value of FGR ($\overline{\Delta}/\Delta = 1$) in the training dataset results in a learned parameterization that has negligible effect in online simulations. On the other hand, a relatively large value (FGR = 4) results in overenergized grid-scale features. The value used here (FGR = 3) corresponds to the strongest parameterization effect without generating grid-scale noise. Note that the optimal FGR parameter depends on the numerical and physical dissipation schemes present in the

ocean model, as the ANN subfilter parameterization alone does not produce enough gridscale dissipation. For the discussion of how to choose FGR parameter see Perezhogin, Balakrishna, and Agrawal (2024); Perezhogin, Zhang, Adcroft, Fernandez-Granda, and Zanna (2024); Perezhogin and Glazunov (2023).

Text S4. Online implementation and numerical stability in MOM6

The trained parameters of the ANN subfilter model are saved to a NetCDF file and read by the numerical ocean model during initialization. The neural network inference is implemented using the Fortran module of Sane, Reichl, Adcroft, and Zanna (2023). The ANN inference takes $\approx 10\%$ of the ocean model runtime, for a neural network with one hidden layer and 20 neurons. However, the inference can be further accelerated, as we found that the inference in Python is generally faster than in Fortran.

The implemented ANN parameterization works stably (free of NaNs in prognostic fields) in idealized Double Gyre and global ocean OM4 configurations, without any tuning, in part because the biharmonic Smagorinsky model provides the dissipation. In the idealized configuration NeverWorld2 (NW2, Marques et al. (2022)), however, tuning is required to improve the numerical stability even when a backscatter parameterization (whether our ANN or more traditional parametrization) is used together with biharmonic Smagorinsky model; e.g., Yankovsky, Bachman, Smith, and Zanna (2024). We have modified the ANN parameterization to achieve stability, without optimizing for online metrics, using a set of minimal changes. Our tuning includes attenuating the magnitude of the ANN parameterization in high-strain regions following Perezhogin, Zhang, et al. (2024) and

allowing the MOM6 dynamical core to truncate velocities if they are too big. Additionally,

at resolution $1/6^{\circ}$ in NW2, we had to reduce the time stepping interval.

 Table S1.
 Parameters of the training data and artificial neural network (ANN) model

:

Category	Value		
Training Data Parameters			
High-resolution data	CM2.6 (Griffies et al., 2015), 0.1° ocean grid		
Diagnosed features	$\overline{\sigma}_S,\overline{\sigma}_T,\overline{\omega},{f S},{f T}$		
Layer Depths (m)	5, 55, 110, 180, 330, 730, 1500, 2500, 3500, 4500		
Horizontal grid type	Tripolar		
Horizontal extent	All globe including polar latitudes		
Coarse Grid Spacing, Δ (nominal)	$0.4^{\circ}, 0.9^{\circ}, 1.2^{\circ}, 1.5^{\circ}$		
Coarse Grid Spacing, Δ (km, $60S^{\circ} - 60N^{\circ}$)	22-44, 50-100, 67-134, 85-167		
Gaussian Filter Width, $\overline{\Delta}$	$1.2^{\circ}, 2.7^{\circ}, 3.6^{\circ}, 4.5^{\circ}; \text{ i.e., } \overline{\Delta}/\Delta = 3$		
Training / Validation / Test Splitting (years)	181 - 188 / 194 / 199 - 200		
Snapshot Averaging Interval	5 days		
Time Seperation Between Snapshots	1 month		
Number of 2D Snapshots used for Training	$10 \times 4 \times 8 \times 12 = 3840$		
Number of Training Iterations	16000 (each iteration randomly selects 2D snapshot)		
ANN Parameters			
Input Size	3×3		
ANN type	Multilayer Perceptron (MLP)		
ANN used for offline analysis	2 hidden layers, 32 neurons each, 2051 parameters		
ANN used in online implementation	1 hidden layer with 20 neurons, 623 parameters		
Activation Function	ReLU		
Note	Regularization is not applied during training		

RMSE	$0^{\circ}\mathrm{E}$	$15^{\circ}\mathrm{E}$	$30^{\circ}\mathrm{E}$	$45^{\circ}\mathrm{E}$
$\operatorname{Control}(1/3^{\circ})$	51.3	46.8	49.1	36.8
Yankovsky $24(1/3^{\circ})$	33.5	31.6	29.9	27.4
ZB20-Reynolds $(1/3^{\circ})$	32.7	25.4	26.1	21.6
$ANN(1/3^{\circ})$	35.0	24.3	30.9	28.6
$\operatorname{Control}(1/4^{\circ})$	52.1	42.1	40.3	34.6
Yankovsky $24(1/4^{\circ})$	27.8	23.0	20.7	21.3
ZB20-Reynolds $(1/4^{\circ})$	26.9	21.0	18.4	18.5
$ANN(1/4^{\circ})$	29.2	20.0	16.7	19.7
$\operatorname{Control}(1/6^{\circ})$	42.7	30.7	31.8	26.7
$Yankovsky24(1/6^{\circ})$	26.2	22.3	16.1	16.8
ZB20-Reynolds $(1/6^{\circ})$	27.7	24.5	18.9	18.4
$ANN(1/6^{\circ})$	23.5	18.8	13.8	14.6

Table S2. Online results in idealized configuration NeverWorld2 at three coarse resolutions $(1/3^{\circ}, 1/4^{\circ} \text{ and } 1/6^{\circ})$. The root mean squared errors (RMSE) in 1000-day averaged position of interfaces over four meridional transects at longitudes 0°E, 15°E, 30°E and 45°E. RMSE units are metres. The interfaces for Control and ANN-parameterized runs at resolution $1/4^{\circ}$ at longitudes 0°E and 45°E are also shown in Figure S3. The error is computed w.r.t. $1/32^{\circ}$ model. Yankovsky24 stands for parameterization of Yankovsky et al. (2024), ZB20-Reynolds stands for Zanna and Bolton (2020) parameterization implemented and modified by Perezhogin, Zhang, et al. (2024). Parameterizations are not retuned when resolution is changed.

	ACC transport [Sv]
$1/32^{\circ}$	235.3
$\overline{\text{Control}(1/3^\circ)}$	242.7
Yankovsky $24(1/3^{\circ})$	237.4
ZB20-Reynolds $(1/3^{\circ})$	230.2
$ANN(1/3^{\circ})$	241.6
$\overline{\text{Control}(1/4^\circ)}$	245.1
Yankovsky $24(1/4^{\circ})$	229.9
ZB20-Reynolds $(1/4^{\circ})$	225.4
$ANN(1/4^{\circ})$	236.9
$Control(1/6^{\circ})$	243.3
Yankovsky $24(1/6^{\circ})$	230.4
ZB20-Reynolds $(1/6^{\circ})$	219.5
$ANN(1/4^{\circ})$	228.8

:

Table S3. Online results in idealized configuration NeverWorld2. The ACC transport through

the Drake Passage at $0^\circ \mathrm{E}$ averaged over 800 days.

Figure S1. Extension of Figure 1 in the main text with generalization of two ANN parameterizations to multiple unseen depths, but seen resolution used for training (0.9°) .

Figure S2. Upscale KE transfer (positive numbers correspond to backscatter) averaged over 800 days and integrated over depth in idealized NeverWorld2 configuration. (a) Diagnosed from high-resolution $(1/32^{\circ})$ simulation by filtering and coarsegraining, (b) and (c) predicted by the ANN offline and online, respectively, at coarse resolution $1/4^{\circ}$. The ANN was trained on global ocean data and thus generalizes well to a new configuration as seen in the accurate prediction of KE transfer offline. Prediction offline means that filtered and coarsegrained snapshots of the high-resolution model were given as inputs to the ANN. Slight degradation of prediction online is related to the difference in magnitude of small-scale velocity gradients and large-scale circulation patterns in the coarse ocean model.

:

Figure S3. Online results in idealized configuration NeverWorld2. The 1000-days averaged isopycnal interfaces in the meridional transect of Drake Passage (Longitude 0° E, left column) and at Longitude 45° E. The blue dashed lines show the position of interfaces in the coarse-resolution $(1/4^{\circ})$ experiment, and the gray lines show the interfaces of the high-resolution model $1/32^{\circ}$. The root mean squared errors (RMSE) between coarse and high-resolution models are provided.

Figure S4. Online results in the global ocean-ice model OM4 (Adcroft et al., 2019), North Atlantic region. Comparison of the ANN parameterization to a baseline parameterization tested in Chang et al. (2023). We consider biases in sea surface temperature (SST), sea surface salinity (SSS). Model output is averaged over years 1981-2007. The observational data for SST and SSS is given by the World Ocean Atlas 2018 (WOA18, Locarnini et al. (2018)). Root mean square errors (RMSEs) between simulations and observations are provided.

Offline metrics in CM2.6

Figure S5. Upper row: Offline performance for the ANN parameterization with dimensional scaling on CM2.6 data. Three versions of the parameterization differ in the number of neurons used or the size of the spatial stencil. In particular, the left column is the ANN used in online simulations, and the center column is the ANN used in offline analysis but retrained using all available data. Lower row: Kinetic energy (KE) and available potential energy (APE) in short 5-year OM4 parameterized simulations for these three versions of the ANN parameterization.

X - 18

:

Figure S6. (Upper row) Offline kinetic energy (KE) transfer spectrum, where $T(k) = 2\pi k Re(\mathcal{F}(\mathbf{u})^* \mathcal{F}(\mathbf{S}))$, and \mathcal{F} is the 2D Fourier transform, Re is the real part, and * is the complex conjugate. (Lower row) power spectrum of subfilter forcing $2\pi k \mathcal{F}(\mathbf{S})^* \mathcal{F}(\mathbf{S})$. Spectra are computed in the North Atlantic region $(25 - 45^\circ \text{N}) \times (60 - 40^\circ \text{W})$ and at depth 5m. $R_d = 22.6 \text{km}$ is the Rossby deformation radius in this region. Results are shown for an ANN used in online simulations.

We can identify two effects of the coarsening of the resolution on the diagnosed and predicted eddy fluxes. First, the diagnosed interscale energy transfer vanishes once the Rossby deformation radius becomes unresolved. This can be explained by the blocking of the inverse energy cascade on the scales much larger than the forcing scale (deformation radius). Second, the ANN parameterization predicts even smaller kinetic energy transfer at these coarse resolutions ($\approx 1^{\circ}$). It is a subject of future studies whether we should attempt to achieve more accurate predictions at these resolutions with improved architecture of the ANN or consider alternative parameterization approaches, such as parameterizing buoyancy fluxes instead, Balwada et al. (2025).

- Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., ... others (2019). The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. Journal of Advances in Modeling Earth Systems, 11(10), 3167–3211. doi: https:// doi.org/10.1029/2019MS001726
- Agdestein, S. D., & Sanderse, B. (2025). Discretize first, filter next: Learning divergenceconsistent closure models for large-eddy simulation. Journal of Computational Physics, 522, 113577. doi: https://doi.org/10.1016/j.jcp.2024.113577
- Balwada, D., Perezhogin, P., Adcroft, A., & Zanna, L. (2025). Design and implementation of a data-driven parameterization for mesoscale thickness fluxes. *Authorea Preprints*.
- Chang, C.-Y., Adcroft, A., Zanna, L., Hallberg, R., & Griffies, S. M. (2023). Remote versus local impacts of energy backscatter on the North Atlantic SST biases in a global ocean model. *Geophysical Research Letters*, 50(21), e2023GL105757. doi: https://doi.org/10 .1029/2023GL105757
- Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., ... others (2015). Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. *Journal of Climate*, 28(3), 952–977. doi: https://doi.org/10.1175/ JCLI-D-14-00353.1
- Grooms, I., Loose, N., Abernathey, R., Steinberg, J., Bachman, S. D., Marques, G. M., ... Yankovsky, E. (2021). Diffusion-based smoothers for spatial filtering of gridded geophysical data. *Journal of Advances in Modeling Earth Systems*, 13(9), e2021MS002552. doi: https:// doi.org/10.1029/2021MS002552

- Guillaumin, A. P., & Zanna, L. (2021). Stochastic-deep learning parameterization of ocean momentum forcing. Journal of Advances in Modeling Earth Systems, 13(9), e2021MS002534.
 doi: https://doi.org/10.1029/2021MS002534
- Gultekin, C., Subel, A., Zhang, C., Leibovich, M., Perezhogin, P., Adcroft, A., ... Zanna, L. (2024). An analysis of deep learning parameterizations for ocean subgrid eddy forcing. arXiv preprint arXiv:2411.06604. doi: https://doi.org/10.48550/arXiv.2411.06604
- Leith, C. (1996). Stochastic models of chaotic systems. *Physica D: Nonlinear Phenomena*, 98(2-4), 481–491. doi: https://doi.org/10.1016/0167-2789(96)00107-8
- Locarnini, M., Mishonov, A., Baranova, O., Boyer, T., Zweng, M., Garcia, H., ... others (2018). World ocean atlas 2018, volume 1: Temperature. NOAA Atlas NESDIS.
- Loose, N., Abernathey, R., Grooms, I., Busecke, J., Guillaumin, A., Yankovsky, E., ... others (2022). GCM-filters: A Python package for diffusion-based spatial filtering of gridded data. *Journal of Open Source Software*, 7(70).
- Marques, G. M., Loose, N., Yankovsky, E., Steinberg, J. M., Chang, C.-Y., Bhamidipati, N., ... others (2022). NeverWorld2: An idealized model hierarchy to investigate ocean mesoscale eddies across resolutions. *Geoscientific Model Development*, 15(17), 6567–6579. doi: https://doi.org/10.5194/gmd-15-6567-2022
- Perezhogin, P., Balakrishna, A., & Agrawal, R. (2024). Large eddy simulation of ocean mesoscale eddies. In Proceedings of the Summer Program 2024, Center for Turbulence Research, Stanford University (p. 507-516). Retrieved from https://arxiv.org/abs/2501.05357
- Perezhogin, P., & Glazunov, A. (2023). Subgrid parameterizations of ocean mesoscale eddies based on Germano decomposition. Journal of Advances in Modeling Earth Systems, 15(10).

doi: https://doi.org/10.1029/2023ms003771

- Perezhogin, P., Zhang, C., Adcroft, A., Fernandez-Granda, C., & Zanna, L. (2024). A stable implementation of a data-driven scale-aware mesoscale parameterization. Journal of Advances in Modeling Earth Systems, 16(10), e2023MS004104. doi: https://doi.org/10.1029/ 2023MS004104
- Prakash, A., Jansen, K. E., & Evans, J. A. (2022). Invariant data-driven subgrid stress modeling in the strain-rate eigenframe for large eddy simulation. *Computer Methods in Applied Mechanics and Engineering*, 399, 115457. doi: https://doi.org/10.1016/j.cma.2022.115457
- Sane, A., Reichl, B. G., Adcroft, A., & Zanna, L. (2023). Parameterizing vertical mixing coefficients in the ocean surface boundary layer using neural networks. *Journal of Ad*vances in Modeling Earth Systems, 15(10), e2023MS003890. doi: https://doi.org/10.1029/ 2023MS003890
- Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. the basic experiment. *Monthly weather review*, 91(3), 99–164. doi: https://doi.org/10.1175/ 1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
- Srinivasan, K., Chekroun, M. D., & McWilliams, J. C. (2024). Turbulence closure with small, local neural networks: Forced two-dimensional and β-plane flows. Journal of Advances in Modeling Earth Systems, 16(4), e2023MS003795. doi: https://doi.org/10.1029/2023MS003795
- Yankovsky, E., Bachman, S., Smith, K. S., & Zanna, L. (2024). Vertical structure and energetic constraints for a backscatter parameterization of ocean mesoscale eddies. *Journal of Ad*vances in Modeling Earth Systems, 16(7), e2023MS004093. doi: https://doi.org/10.1029/ 2023MS004093

Zanna, L., & Bolton, T. (2020). Data-driven equation discovery of ocean mesoscale closures. Geophysical Research Letters, 47(17), e2020GL088376. doi: https://doi.org/10.1029/ 2020GL088376

:

Zhang, C., Perezhogin, P., Adcroft, A., & Zanna, L. (2024). Addressing out-of-sample issues in multi-layer convolutional neural-network parameterization of mesoscale eddies applied near coastlines. arXiv preprint arXiv:2411.01138. doi: https://arxiv.org/abs/2411.01138