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Key Points:

• This study validates specialized boundary condition treatments in CNN models
to reduce boundary artifacts in ocean parameterizations.

• This approach can be applied directly to already trained CNN models to ensure
accurate and stable implementation of mesoscale eddies parameterizations.

• Replicate padding outperforms zero padding by minimizing boundary artifacts and
preventing extreme values that compromise simulations.
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Abstract
This study addresses the boundary artifacts in machine-learned (ML) parameterizations
for ocean subgrid mesoscale momentum forcing, as identified in the online ML implemen-
tation from a previous study (Zhang et al., 2023). We focus on the boundary condition
(BC) treatment within the existing convolutional neural network (CNN) models and aim
to mitigate the ”out-of-sample” errors observed near complex coastal regions without
developing new, complex network architectures. Our approach leverages two established
strategies for placing BCs in CNN models, namely zero and replicate padding. Offline
evaluations revealed that these padding strategies significantly reduce root mean squared
error (RMSE) in coastal regions by limiting the dependence on random initialization of
weights and restricting the range of out-of-sample predictions. Further online evaluations
suggest that replicate padding consistently reduces boundary artifacts across various re-
trained CNN models. In contrast, zero padding sometimes intensifies artifacts in certain
retrained models despite both strategies performing similarly in offline evaluations. This
study underscores the need for BC treatments in CNN models trained on open water data
when predicting near-coastal subgrid forces in ML parameterizations. The application
of replicate padding, in particular, offers a robust strategy to minimize the propagation
of extreme values that can contaminate computational models or cause simulations to
fail. Our findings provide insights for enhancing the accuracy and stability of ML pa-
rameterizations in the online implementation of ocean circulation models with coastlines.

Plain Language Summary

This study focuses on improving machine learning (ML) models used to predict ocean
forces near coastlines, where errors arise because these models lack information in the
area. We investigated how boundary conditions are handled in existing convolutional neu-
ral network models to reduce these errors without creating complex new architectures.
By using two methods, i.e., zero padding and replicate padding, we found that replicate
padding significantly decreases prediction errors in coastal areas. While zero padding some-
times worsens issues in certain models, our results show that replicate padding is more
reliable for effectively minimizing extreme value errors. This work highlights the impor-
tance of proper boundary condition treatment in ML models for coastal applications, ul-
timately aiming to enhance the accuracy and reliability of ocean circulation predictions.

1 Introduction

Even with advances in computing over recent decades, climate models have finite
resolution and must parameterize unresolved, subgrid-scale processes. Historically, these
parameterizations employ a mix of theory and empirical approaches (e.g., for ocean cir-
culation, Gent et al., 1995; Griffies et al., 1998; Juricke et al., 2017), but are imperfect
so that the representation of subgrid processes continues to be a major source of bias and
errors in climate projections (Stevens & Bony, 2013; Hewitt et al., 2020).

Recently, the use of machine learning methods has emerged as a promising tool for
developing subgrid parameterizations in numerical models of both the atmosphere (Rasp
et al., 2018; Beucler et al., 2021; Yuval et al., 2021; Wang et al., 2022; Shamekh et al.,
2023) and ocean (Bolton & Zanna, 2019; Zanna & Bolton, 2020; Guillaumin & Zanna,
2021; Sane et al., 2023; A. Ross et al., 2023; Bodner et al., 2023; Perezhogin et al., 2024).
Among machine learning architectures employed for parameterization of subgrid fluxes
in climate models, convolutional neural networks (CNNs) have become increasingly pop-
ular due to their ability to connect local fluxes or tendencies to spatially non-local fea-
tures (e.g., Bolton & Zanna, 2019; Zanna & Bolton, 2020; Guillaumin & Zanna, 2021;
Bodner et al., 2023; Gregory et al., 2024). However, applying CNN-based ML param-
eterizations presents unique challenges in ocean circulation models which must account
for complex boundary conditions and topographical features at the Earth’s surface. Un-
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like atmospheric models, ocean models must manage dynamic interactions of coastal wa-
ter with shorelines, where CNNs often struggle to make a prediction, because they op-
erate by sliding fixed-size kernels across images (fields) to extract features. This was high-
lighted in a recent study by Zhang et al. (2023), where significant boundary artifacts were
observed when a CNN, trained to parameterize mesoscale eddies in the open ocean(Guillaumin
& Zanna, 2021), was employed near coasts in an ocean circulation model. These arti-
facts are likely the ”out of sample” problem in ML parameterizations, wherein a network
trained on limited data (open ocean) might extrapolate poorly beyond its knowledge base
(near the coast). In their study, the out-of-sample predictions of the CNN applied near
the boundaries lead to errors that can ultimately propagate across the entire computa-
tional domain as the circulation model evolves.

Training a CNN model with global data including the near-coast regions should
solve the out-of-sample problem near boundaries. However, this approach has significant
challenges. Consider training a CNN to represent an open ocean (deep water) physical
process that is unresolved in a coarse ocean model. Many of the eddy-resolving process-
studies used to derive parameterizations of mesoscale turbulence do not consider eddy
interaction with coasts, and so inherently may not rectify the parameterized physics and
fluxes appropriately. Secondly, the shallow depth near the coast might modify the spa-
tial scales of the process requiring even finer resolution in the high-resolution simulation
used to obtain training data which could be too costly (Hallberg, 2013). Thirdly, the train-
ing data near the coastline is limited because the majority of the grid points correspond
to the open ocean. Finally, the modification of the process near coastlines (e.g. differ-
ent dynamics, scales, etc.) likely needs more sophisticated CNN models to capture the
additional complexity (i.e either or both deeper and wider networks). The machine learn-
ing models that we have seen developed so far to parameterize ocean processes are based
either on data from idealized simulations (Bolton & Zanna, 2019; Zanna & Bolton, 2020;
A. Ross et al., 2023) or on regional data from open ocean areas in global General Cir-
culation Model (GCM) simulations that exclude land points (Guillaumin & Zanna, 2021;
Bodner et al., 2023).

All this to say, training a new ML model including coastlines remains challenging,
and alternative strategies to mitigate the out-of-sample issues near shorelines should be
explored. The border effect for CNNs has been extensively studied in image processing,
where common remedies include filling values at the image edges, that is padding (Innamorati
et al., 2018; Nguyen et al., 2019; Huang et al., 2021; Yang et al., 2023), rescaling the re-
sult of the convolution operation near the borders, that is partial convolution (Liu et al.,
2018), or changing the filter kernel near the borders (Leng & Thiyagalingam, 2023). A
most straightforward approach to mitigate out-of-sample errors involves providing bound-
ary values for land points, i.e., filling in appropriate values where no ocean field data ex-
ists. In previous research, most studies on spatiotemporal problems with boundaries ap-
ply simple, explicit rules like periodic boundaries (Mohan et al., 2020; Guan et al., 2022;
A. Ross et al., 2023). The studies specifically focus on boundary treatments for CNNs
remain limited (Alguacil et al., 2021; Durand et al., 2024).

Zhang et al. (2023) already tried zeroing-out land values in the input, or output,
features of the whole CNN, but significant boundary artifacts are still observed, indicat-
ing that zero padding in the first layer is ineffective in mitigating the out-of-sample prob-
lem in coastal water. Drawing inspiration from the image processing community, which
goes further and applies input filling for each layer within the network, this paper presents
and compares two boundary condition treatments, i.e., zero padding and replicate padding
at each layer, designed to reduce shoreline artifacts for a CNN parameterization of mesoscale
eddies evaluated both offline and online. The paper is organized as follows. In Section
2, the limitations of CNN-based parameterizations near boundaries and two BC treat-
ments in multilayer CNN models are introduced. Section 3 briefly introduces the CNN
model used in this study, evaluating its performance with and without boundary con-
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dition treatments in an offline setting. In Section 4, an ocean circulation model employ-
ing the ML parameterization with BC treatments is tested against an idealized wind-
driven double gyre case, demonstrating the importance of boundary treatments in on-
line CNN implementations when land points are present. Finally, conclusions and ideas
for future study are discussed in Section 5.

2 Methods

In this section, we discuss the limitations of ML parameterizations using classic CNN
models near ocean shorelines and introduce two straightforward yet effective methods
for managing boundary conditions in multilayer CNN models.

2.1 Limitations of CNN-based parameterizations near boundaries

CNNs function by sliding fixed-size kernels over images to extract spatially-local
features. Discontinuous values of a physical field across a land-sea boundary, which are
not sampled in training, will lead to undetermined outputs and limit their effectiveness
in environments with intricate spatial boundaries.

Consider an input data field illustrated in Figure 1(a) where the northwest portion
consists of land points (grey), and the remaining points are ocean points. In this exam-
ple, the ocean points have known values of 0.5, while the land points contain unknown
(and physcially meaningless) values. Typically, without special BC treatment, a value
of zero is applied on the land points through masking of inputs (multiplying by one or
zero), as shown in Figure 1(b)i. In the case of a one-layer CNN, this masking is equiv-
alent to setting a Dirichlet boundary condition, where an input field y is set to zero at
the boundary point b, that is y|b = 0. However, merely setting the land points to zero
before the first convolutional layer can introduce bias in multilayer CNN models.

Consider a two-layer CNN model, featuring two consecutive convolutional layers,
each with a 3×3 kernel and uniform weights of 1. The first convolutional layer processes
a 5×5 input field around an ocean point (the blue cell in Figure 1(a)), and assigns val-
ues to all cells in the output 3×3 field including land points. In this example, the land
cells were assigned values of 0.5, 2, and 2 (as indicated in the gray cells of Figure 1(b)ii).
These values in land cells do not represent any physical value or boundary conditions.
These artificial values at the land points then influence the computation of the value in
the ocean point when the 3×3 stencil passes the second convolutional layer (Figure 1(b)iii).
This propagating contamination from zeroed inputs highlights the need for more nuanced
BC treatments in CNN-based models used for spatial parameterizations.

2.2 Special treatments of boundary conditions in multilayer CNNs

To address the artifacts introduced by values at land points, we have implemented
two padding strategies that incorporate information into these points at each convolu-
tional layer in multilayer CNN models. It should be noted that the term ’padding’ used
here differs from the traditional usage in CNN terminology, where ’padding’ typically
refers to adding values around the borders of the input images. In our context, ’padding’
specifically denotes the replacement of values at points designated as land within the land
masks, which may include locations around or within the borders of the input image.

The first padding strategy we consider is ”zero padding”. This is the simplest ap-
proach, where values are replaced by zeros on land points for each layer. To illustrate,
consider the scenario described in Section 2.1, where no boundary condition treatments
were initially applied other than zero masking the land values of the input layer. This
results in the values 0.5, 2, and 2 at land points after the first convolutional layer (Fig-
ures 1(b,c)ii). These land values are reset to zero before the subsequent layer (Figure 1(c)iii),
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Figure 1. Examples of three boundary condition strategies employed in an idealized two-layer

CNN where all weights are set to 1: (a) the layout of land masks; (b) no specific treatment at

land points (no padding); (c) filling land points with zeros (zero padding); (d) filling land points

with values averaged from the nearest ocean points (replicate padding).
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thus ensuring that a Dirichlet-like boundary condition is maintained at each convolu-
tional layer of the CNN.

The second strategy we consider is ”replicate padding”, where the value at a land
point is calculated as the average of values from the nearest ocean points. This method
approximates a Neumann boundary condition, where (∂y/∂n)|b = 0, and n represents
the vector normal to the boundary. For example, the red box in Figure 1(d)i depicts a
3×3 stencil used to compute the value for the central land point, averaging the values
from neighboring ocean points, i.e., 0.5 from the ocean points northeast, east, southeast,
and south to the land point. This averaging process is repeated after each convolutional
layer to consistently apply a quasi-Neumann boundary condition across all layers of the
CNN.

2.3 Replicate padding for larger kernels size

In Section 2.2, we explored two padding strategies applied to sweeping a 3×3 ker-
nel over the computational domain. In many CNN architectures, larger kernels such as
5 × 5 and 7 × 7 might also be employed. For zero padding, no additional effort is re-
quired to assign a value of zero to land points encompassed by a larger kernel.

For larger kernels using replicate padding, iterations of replication are applied to
fill values beyond the first layer of land points. Figure 1(d)v-vii illustrates the mecha-
nism of replicate padding with a 5×5 kernel. After the first application of replicate padding
on the original image, the field with the first layer of replicated land points is established
(Figure(d)i). To address the values beyond these first-layer land points, we propagate
the land masks landward, creating a new field of land masks (the stencil with three gray
cells in Figure 1(d)v). A second replicate padding iteration follows in Figure 1(d)vi, up-
dating the values in the land points based on the nearest ”ocean points”, as indicated
by the new land masks.

This iterative process of propagating land masks and updating land values is nec-
essary when using larger kernels in CNN models. It ensures that all land points within
the kernel reach are appropriately filled, maintaining the integrity of the computational
model across various kernel sizes.

3 Offline evaluations of CNN+BC treatments

To illustrate the effectiveness of BC treatments in CNN models, we employ an ex-
isting CNN model and test it against a global dataset from a high-resolution GCM ocean
simulation. In this section, we first outline the CNN model adopted for this study. Then
we compare the offline performance of the CNN model with and without the implemen-
tation of BC treatments.

3.1 CNN model and dataset descriptions

The CNN model used in this study is the stochastic-deep learning model from Guillaumin
and Zanna (2021) (hereafter referred to as GZ21). The model was trained on the high-
resolution surface horizontal velocities u from GFDL CM2.6 ocean simulations, span-
ning over 7, 000 days. The surface velocities u, with the nominal grid size of 1/10◦ and
sampled daily, were filtered and coarse-grained to yield ū. The subgrid momentum forc-
ing is diagnosed as

S = (ū · ∇)ū− (u · ∇)u (1)

where the overbar indicates the horizontal filtering and coarse-graining, and ∇ is the hor-
izontal gradient. GZ21 was trained using the first 80% of the data (approximately 16 years),
drawn from selected four regions to represent different dynamical regimes. The test dataset
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for this section comprises the remaining 20% (approximately 4 years), covering the global
domain.

GZ21 is structured as a fully convolutional neural network with eight convolutional
layers. The kernel sizes for the first two layers are 5× 5, and 3× 3 for the subsequent
layers. The layers contain 128, 64, 32, 32, 32, 32, 32, and 4 filters, respectively, each of
the first 7 layers followed by ReLU activation functions. The loss function employed is
the full negative Gaussian log-likelihood, which estimates the distribution of subgrid mo-
mentum forcing given the local velocity field. The CNN outputs both the mean and stan-
dard deviation of this distribution, S

(mean)
C,i,j and S

(std)
C,i,j , where the stochastic subgrid mo-

mentum forcing is calculated as

SC,i,j = S
(mean)
C,i,j + ϵC,i,j · S(std)

C,i,j ; C = x, y; i = 1, . . . ,M ; j = 1, . . . , N. (2)

Here, i and j are the grid spatial indices, M and N are grid sizes in two directions, C
indicates the component of momentum forcing (zonal ”x” or meridional ”y”), and ϵC,i,j

are random 2D fields sampled from the standard normal distribution, independent for
each grid cell, zonal/meridional component, vertical layer, and time step. For further de-
tails on model training and data generation, see Section 2 of Guillaumin and Zanna (2021).

3.2 Metrics for offline evaluation

To assess the accuracy of the CNN predictions, we employ the standard root mean
square error (RMSE) to measure the absolute error between the predicted values and
the ground truth. The RMSE is time-averaged at each location as follows

RMSEC,i,j =

√√√√ 1

T

T∑
t=1

(
S
(mean)
C,i,j,t − S

(true)
C,i,j,t

)2

; C = x, y (3)

where t is the time index of the snapshots and T is the total number of snapshots (days)
in the test dataset. The RMSE averaged over both time and space is given by

RMSEC =

√√√√ 1

MNT

M∑
i=1

N∑
j=1

T∑
t=1

(
S
(mean)
C,i,j,t − S

(true)
C,i,j,t

)2

; C = x, y (4)

Additionally, we employ a R2 coefficient, as outlined in Guillaumin and Zanna (2021),
as a measure similar to the correlation between the predictions and the truth. Values
close to 1 signify strong predictions, while values near 0 indicate weaker predictions. The
time-averaged R2 at each location is calculated as

R2
C,i,j = 1−

T∑
t=1

(
S
(mean)
C,i,j,t − S

(true)
C,i,j,t

)2

T∑
t=1

S
(true) 2
C,i,j,t

; C = x, y (5)

The R2 averaged over both time and space is determined by

R2
C = 1−

M∑
i=1

N∑
j=1

T∑
t=1

(
S
(mean)
C,i,j,t − S

(true)
C,i,j,t

)2

M∑
i=1

N∑
j=1

T∑
t=1

S
(true) 2
C,i,j,t

; C = x, y (6)

These metrics provide a quantitative framework for evaluating the performance of
GZ21 with or without BC treatments in predicting subgrid momentum forces.
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3.3 Tests against global data

GZ21 was trained using data from regions devoid of land, posing a significant out-
of-sample problem when predicting subgrid forces near shorelines. GZ21 has a stencil
size of 21× 21 for predicting subgrid momentum forcing at an ocean grid point. This
wide stencil results in a broad coastal band (within 10 cells from the shore, approximately
60-100 km in distance when eddy-permitting resolution is applied), where the stencil in-
cludes land points, potentially affecting predictions. In their offline evaluation on global
datasets, Guillaumin and Zanna (2021) excluded these problematic points, focusing model
evaluation exclusively on open ocean areas.

In our analysis, we divide the global domain into two distinct areas: the open ocean
domain and the coastal domain. RMSE maps in Figure 2 (plots a and b) illustrate the
absolute prediction errors without additional BC treatments for each domain. In this
evaluation, subgrid forcing predictions in one direction are sufficiently representative of
the predictions in both directions; thus, only zonal predictions are presented in this sec-
tion. The space- and time-averaged prediction errors in the coastal domain are 3 times
higher than those in the open ocean (b versus a). The errors increase as fewer layers of
coastal water points are included in the evaluation, with the errors in the layer of grid
points closest to the shore being an order of magnitude higher than those in the open
ocean (Table 1).

RMSE maps (plots c and d) in Figure 2 show the result of implementing either zero
padding or replicate padding which reduces the errors by approximately 11-12%, with
both strategies performing comparably. The reduction percentage increases to about 25%
for the layer closest to the shore (Table 1). These padding strategies do not alter pre-
dictions in the open ocean domain. The changes are not clearly apparent in the global
maps of RMSE but zooming into the Malay Archipelago (plots (e) to (g) of Figure 2)
shows responses in ocean cells with significant numbers of land in the vicinity. These de-
tailed views indicate that immediate proximity to land led to larger errors without padding,
and that as land cells occupy a smaller fraction of the 21×21 stencil (i.e. further away
from the coast), the padding has less impact.

No Padding Zero Padding Replicate Padding
Number
of Layers

RMSE to
truth (10−7ms−2)

RMSE to
truth (10−7ms−2)

Improved
%

RMSE to
truth (10−7ms−2)

Improved
%

10 0.883 7.882 10.72 7.717 12.58

7 1.029 0.905 12.05 0.883 14.19

5 1.188 1.028 13.47 0.999 15.88

4 1.305 1.114 14.64 1.081 17.16

3 1.472 1.232 16.30 1.192 19.02

2 1.734 1.404 19.03 1.358 21.69

1 2.209 1.677 24.08 1.634 26.03

Table 1. Offline evaluation results by inferring the subgrid forcing S
(mean)
x using GZ21 in the

coastal domain with different BC padding strategies, based on the metric of RMSE averaged

over both time and space, as well as the improved percentage of using these BC padding strate-

gies. ’Number of Layers’ refers to the number of layers of water points near coastlines that are

included in the evaluation.
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Figure 2. Time-averaged global RMSE maps to true forcing for GZ21 inference of subgrid

forcing S
(mean)
x in open ocean domain (a), in coastal domain without special BC treatment (b),

with zero padding (0P) treatment (c) and replicate padding (RP) treatment (d). (e) to (g) are

zoom-in maps of (b) to (d), respectively. The subtitles include the RMSE averaged over both

time and space.
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The significant errors observed in coastal domain predictions are a manifestation
of the out-of-sample problem. The particular predictions in the coastal domain should
vary from training to training due to the random initialization of weights. To check this,
we retrained a new CNN model, GZ21-T2, following the exact procedures described in
Guillaumin and Zanna (2021). Figure 3 compares the root mean square differences (RMSD)
for coastal domain predictions between GZ21 and GZ21-T2, calculated as

RMSD
(model)
x,i,j =

√√√√ 1

T

T∑
t=1

(
S
(GZ21,mean)
x,i,j,t − S

(GZ21−T2,mean)
x,i,j,t

)2

; (7)

with and without BC treatments. The results indicate that BC treatments effectively
reduce the randomness of out-of-sample predictions, indicated by the notably smaller over-
all differences when BC treatments are applied.

Figure 3. Time-averaged RMSD(model) maps, focusing on the Malay Archipelago, of subgrid

forcing S
(mean)
x between inference of the original CNN model GZ21 and the retrained CNN model

GZ21-T2 with global data (a) without special BC treatment, (b) with zero padding treatment,

and (c) replicate padding treatment. The RMSD values in subtitles are global averaging over

both time and space.

The R2 coefficient, as described in Section 3.2, serves as an effective indicator of
the overall performance of ML models within the area of interest. The global R2 values
averaged over both time and space (Eq. 6) are 0.381 for GZ21 without BC treatments,
0.563 for GZ21 with zero paddings, and 0.558 for GZ21 with replicate padding. The vari-
ability in R2 averaged in space reflects varying levels of bias from out-of-sample predic-
tions near the coasts under different BC treatments. For example, at a location (−74.15◦, 39.41◦)
near Atlantic City, New Jersey, GZ21 tends to predict significantly higher absolute val-
ues. Figure 4(a) contrasts the predicted forcing from GZ21 with the true forcing, where
the blue lines represent true forcing, the orange lines represent the GZ21 predictions, and
the dashed green lines represent the 95% confidence interval. The true forcing is in the
range of [−4, 0]×10−7ms−2, while the mean part of the forcing from the GZ21 predic-
tions is in the range of [−20, 0]×10−7ms−2. The BC treatments can effectively reduce
the prediction range, and both strategies reduce the range of forcing to [−4, 0]×10−7ms−2.
These plots highlight the efficacy of BC treatments in narrowing the prediction range
to more closely align with the actual measurements, despite not perfectly matching the
truth.

To verify the reproducibility of GZ21, we repeated the training process 6 additional
times (GZ21-T3 to GZ21-T8). It is important to note that each model may exhibit sig-
nificant performance variations in coastal domains (out-of-sample predictions) due to the
random initialization of weights during each training session. Table 2 lists the global R2

coefficients, coastal RMSE between predictions and truth, and coastal RMSD between
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Figure 4. Time series of true forcing (blue), of the mean predictions (S
(mean)
x , orange), and

of the 95% confidence interval (±1.96S
(std)
x,i,j , shaded in grey) at a location (−74.15◦, 39.41◦) near

Atlantic City, New Jersey.
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different model predictions, both with and without BC treatments. The standard de-
viation of the R2 column for no padding, zero padding, and replicate padding are 0.0179,
0.0049, 0.0056, respectively. The significantly lower numbers from the offline evaluations
with BC treatments confirm the improved reproducibility of GZ21 with BC treatments
compared to GZ21 without BC treatments.

No Padding Zero Padding Replicate Padding
Model
Name R2 RMSE to

truth (10−8ms−2)

RMSD to

GZ21 (10−8ms−2)
R2 RMSE to

truth (10−8ms−2)

RMSD to

GZ21 (10−8ms−2)
R2 RMSE to

truth (10−8ms−2)

RMSD to

GZ21 (10−8ms−2)

GZ21 0.381 8.828 / 0.563 7.882 / 0.558 7.717 /

GZ21-T2 0.385 8.861 3.105 0.559 7.783 2.483 0.546 7.716 2.219

GZ21-T3 0.401 8.846 3.210 0.557 7.823 2.617 0.540 7.772 2.302

GZ21-T4 0.419 8.635 2.969 0.572 7.781 2.505 0.545 7.736 2.244

GZ21-T5 0.367 8.874 2.990 0.561 7.832 2.472 0.547 7.748 2.193

GZ21-T6 0.400 8.679 3.062 0.558 7.760 2.458 0.546 7.707 2.183

GZ21-T7 0.367 8.938 3.110 0.558 7.891 2.558 0.540 7.790 2.220

GZ21-T8 0.395 8.793 3.042 0.559 7.878 2.532 0.546 7.767 2.262

Table 2. Offline evaluation results by inferring the subgrid forcing S
(mean)
x using original CNN

model GZ21 or retrained model GZ21-T2 to GZ21-T8 with different BC padding strategies,

based on two metrics of global R2 and coastal RMSE averaged over both time and space, as well

as coastal RMSD of the forcing prediction between retrained models and GZ21.

4 Online implementations of CNN+BC with MOM6

The ultimate goal of developing ML parameterizations is to improve the online so-
lution of numerical models. While the overall offline performance is excellent in Section
3, it does not assure comparable online success (A. S. Ross et al., n.d.). When these pa-
rameterizations are incorporated into a coarse-resolution ocean model and executed over
extended periods, local errors introduced by the parameterization can accumulate and/or
spread throughout the simulation. This can subsequently contaminate the entire domain
or, in severe cases, cause the simulation to fail.

In this section, we further explore the effectiveness of boundary condition (BC) treat-
ments within the GZ21 parameterization for online inference. We test the model both
with and without BC treatments in an idealized case for which we can afford to run a
fine-resolution ”truth”: a wind-driven double gyre (Hallberg & Rhines, 2000). We will
first briefly outline the ocean model used for this study and the setup of the case. Then
we will examine the evaluation results and discuss the computational costs associated
with implementing BC treatments in online simulations.

4.1 Ocean model and case setup

The numerical model employed in this study is the Modular Ocean Model version
6 (MOM6) (Adcroft et al., 2019), the ocean component of the NOAA coupled global cli-
mate and earth system models developed at GFDL. We apply MOM6 under the assump-
tion of an adiabatic limit with no buoyancy forcing, which simplifies the ocean dynam-
ics into the stacked shallow water equations. This assumption facilitates the testing of
the ML parameterization of subgrid momentum forcing (Eq. 1) in an idealized setting
of a primitive equation model. The governing equations are discretized on a C-type stag-
gered grid, positioning the velocity components (ū in Eq. 1) on cell faces and the sub-
grid forcing (S in Eq. 1) at the cell centers. During the implementation of the ML pa-
rameterization, velocity components from MOM6 are interpolated to the cell centers and
then used as inputs to the ML model to infer subgrid forcing, which is then interpolated
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back to the cell faces. Further details on the model descriptions are available in Section
2.1 of Zhang et al. (2023).

For this study, the ocean model is configured to simulate two idealized wind-driven
double gyre scenarios. The first configuration (hereafter referred to as C1) features a bowl-
shaped basin (Hallberg & Rhines, 2000) extending from 0◦ to 22◦ in longitude and from
30◦ to 50◦ in latitude, with a depth ranging from −2000m to 0m in vertical. A vertical
wall is placed at the southern boundary. The flow includes two vertical layers with con-
stant water density in each layer, and no computations involving equation of state, tem-
perature and salinity. The circulation is driven by wind and balanced by bottom fric-
tion. The simulations start from rest and continue for a duration of 10 years. Further
details can be found in Section 3.1 of Zhang et al. (2023).

The second configuration (hereafter referred to as C2) introduces a box-shaped is-
land in the center of the domain based on the first configuration, located between 8.5◦

to 13.5◦ in longitude and 37.5◦ to 42.5◦ in latitude (see Figure 17 in Zhang et al., 2023).
This island represents a significant topographic obstacle in the path of the wind-driven
jet and we expect the abrupt nature of the obstacle to test the limits of the ML param-
eterization near boundaries.

The evaluations are conducted using a coarse grid model with 1/4◦ horizontal res-
olution (hereafter referred to as R4), which is ”eddy-permitting” but not fine enough to
resolve all mesoscale eddy dynamics. By applying the ML parameterization in R4 (here-
after referred to as R4-P), we compare its performance to that of a fine grid model with
a 1/32◦ horizontal resolution (hereafter referred to as R32), which is capable of fully cap-
turing mesoscale eddy processes. In this section, the total Kinetic Energy (KE) of the
flow is the only metric used to quantitatively evaluate the online performance of the CNN
model.

4.2 Results with various BC treatments

The study of Zhang et al. (2023) found that when GZ21 is applied in MOM6 to
predict the subgrid mesoscale momentum forcing near boundaries, it generates artifacts
that cause the over-energization of the flow. The structures highlighted within black rect-
angles in Figure 5 illustrate the typical artifacts, which are absent in the higher-resolution
model R32.

We first consider online evaluations of the original GZ21 model (not retrained) but
with different BC treatment during inference. Figure 6(a-d) shows the relative vortic-
ity snapshots of the upper flow from R32, R4-P without padding, R4-P with zero padding,
and R4-P with zero and replicate padding strategies in the C1 scenario. Figure 6(e,d)
compares the time series of KE in both the upper and lower layer flows under different
padding strategies, with line colors corresponding to the edges of each plot from (a) to
(d). Zhang et al. (2023) demonstrated that the parameterizations based on GZ21 tend
to over-energize the flow in the upper layer while under-energizing the flow in the lower
layer. Neither of the two padding strategies affect the overall energy injection in each
layer, but they are effective in mitigating artifacts near the southern boundary. In C1,
the performance of both treatments appears similar.

The ML parameterizations were also tested in C2. Figure 7(a-d) shows the rela-
tive vorticity snapshots from the ground truth and ML parameterizations with differ-
ent BC treatments. Without special BC treatments, obvious sheared structures appear
both around the box island, as well as at the southern boundary as we observe in C1 (Fig-
ure 7(b)). Zero padding removes the relatively weak artifacts near the southern bound-
ary but does not affect the strong sheared structures around the island (Figure 7(c)). In
contrast, replicate padding effectively eliminates the artifacts in both boundary regions,
aligning the better relative vorticity snapshot with the ground truth. This is also evi-
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Figure 5. Snapshots of the upper layer relative vorticity at the end of C1 and C2 simulations

from the coarse resolution model with ML parameterizations R4-P (a,c) and the fine resolution

R32 (b,d). The ML parameterizations do not use special BC treatments. The black rectangle

indicates the region where the unrealistic eddies are generated.
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Figure 6. (a)-(d): Snapshots of the upper layer relative vorticity at the end of C1 simulations

from: (a) the fine resolution R32; (b) the coarse resolution model using ML parameterization R4-

P without special BC treatment; (c) with zero padding strategy; or (d) with replicate padding.

(e) & (f): Comparison of KE time series for the flow upper layer and lower layer between the

four simulations from (a) to (d). The dashed lines are the time-mean values of KE over the last

5 years and the colors of solid lines correspond to the edge colors of plots (a) to (d), where blue

is for ground truth, orange for no padding, green for zero padding and red for replicate padding.

The black rectangle indicates the region where the unrealistic eddies are generated.
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dent in the time series of KE (Figure 7(e,f)), where no treatment results in a more en-
ergetic flow, zero padding reduces energy from artifacts, and replicate padding closely
matches the KE to that in the ground truth. Thus, replicate padding is the most effec-
tive approach considered in C2. It should be noted that the zonal elongation of eddies
is observed in Figures 6(b-d) and 7(b-d). We hypothesize that the four regions selected
in GZ21 exhibit a tendency towards zonal flows, as discussed in Section 4.4 of Zhang et
al. (2023). The discussion of this issue is beyond the scope of this paper.

Figure 7. Same to Figure 6 but tested on C2.

We now consider whether the padding strategy can reduce the sensitivity of net-
work performance to the random initialization of weights in training processes; the GZ21-
T2 model is retrained with the same data as GZ21 and without padding used during train-
ing (just like what GZ21 does), but reevaluated with the various padding treatments.
Figure 8 shows results with the retrained model in C1. It is interesting to see that the
zero padding strategy fails to eliminate the artifacts near the southern boundary (Fig-
ure 8(c)) as it does with GZ21. After a 5-year run, the flow becomes even more energetic
compared to simulations that did not use any BC treatments. In contrast, replicate padding
with GZ21-T2 performs well in C1 for artifact eliminations. Tests are also conducted on
configuration C2; however, simulations using GZ21-T2 with no padding and zero padding
failed in C2, as excessive energy was injected into the flow, causing the models to blow
up. This issue of over-energization near boundaries is not isolated to GZ21-T2; some other
retrained models (models in Table 2) also struggle to eliminate artifacts using the zero
padding method. The KE time series depicted in Figure 9(c,d) demonstrate that using
zero padding in GZ21-T4 and GZ21-T8 similarly leads to poorer predictions of energy
injection in configuration C1. In contrast, the replicate padding BC treatment consis-
tently reduces energy injection to a more reasonable range across all retrained models,
aligning more closely with the ground truth.

In addition to the effectiveness of the BC strategies, their computational cost is also
a critical consideration. The zero padding strategy does not significantly increase the com-
putational load compared to the approach without BC treatments. Implementing zero
padding across each CNN convolutional layer for GZ21 results in approximately a 10%
increase in wall clock time for CNN inference. In contrast, the process of filling the near-
est value to the land points is considerably more costly due the stencil operations needed
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Figure 8. Same to Figure 6 but tested using GZ21-T2 for the ML parameterizations.

Figure 9. Comparison of KE time series for the flow upper layer and lower layer between the

simulations using GZ21 and retrained CNN models. The first column of plots (a) and (b) rep-

resent the simulation results without any BC treatment, the second column of plots (c) and (d)

represent the results with zero padding BC treatment, and the third column of plots (e) and (f)

represent the results with replicate padding BC treatment. The dashed lines are the time-mean

values of KE over the last 5 years and each row shares the same axis range to better compare the

results with different BC strategies.
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to propagate values. We tried optimizing this operation as a pre-computed sparse ma-
trix, which significantly improved performance, yet only to within a factor of 2 compared
to the no-padding model. While this cost represents a substantial increase compared to
the computational costs associated with no padding and zero padding, it renders the strat-
egy feasible. Furthermore, optimizations in sparse matrix operations could potentially
further reduce the time required for inference.

5 Conclusions

This study was motivated by a notable issue identified in the previous study of Zhang
et al. (2023), where distinct artifacts near boundaries were observed in the online im-
plementation of the ML parameterization based on GZ21. These artifacts were suspected
to be generated by out-of-sample predictions near boundaries because GZ21 was only
trained in the open ocean. Developing a new network capable of accommodating the com-
plex flow regimes near intricate shorelines likely requires substantial effort and sophis-
ticated architectures with uncertain convergence. We instead explored the use of spe-
cialized BC treatments to use with existing CNN models to address over-energization
caused by out-of-sample predictions near coasts.

Our offline evaluations of the existing CNN model GZ21 with the global dataset
CM2.6, demonstrated that both zero padding and replicate padding strategies can ef-
fectively reduce RMSE near coastlines. The significant RMSE in coastal domains is pri-
marily due to the unconstrained out-of-sample predictions in these regions with the orig-
inal GZ21. For example, force predictions near Atlantic City, New Jersey, indicated that
GZ21 without padding tends to produce a wide range of values, whereas GZ21 with zero
or replicate padding can mitigate this randomness and narrow the range of out-of-sample
predictions. In Addition, it is important to note that the unconstrained out-of-sample
error varies significantly among GZ21 and the retained models of GZ21 due to the ran-
dom initialization of weights during their training processes. Implementing boundary treat-
ments can help effectively restrict the error for all models within a reasonable range.

Online evaluations of two configurations, the wind-driven double gyre (C1) and dou-
ble gyre with in island in the center (C2), confirmed that using the replicate padding strat-
egy as a BC treatment can effectively eliminate boundary artifacts in the online imple-
mentation of ML parameterizations, outperforming both the no padding and zero padding
approaches. Our reproducibility tests indicated that GZ21 was fortuitously trained such
that its predictions near boundaries do not generate overly strong sheared artifacts, which
would lead to excessive energy within the flow or even simulation blowup. Although the
no padding strategy was effective in offline evaluations and for several retrained mod-
els in this online evaluation, it was not universally useful, whereas the replicate padding
strategy proved effective at avoiding artifacts across all retrained models in this study.

The objective of this study is to develop strategies that limit prediction errors in
regions where the ML parameterizations lack sufficient ’knowledge’. Typically, ML pa-
rameterizations for ocean subgrid forcing neglect consideration of land points during train-
ing due to the complexities of coastal regions and the intricacies of managing land point
values. This is true for many conventional parameterizations also. In essence, employ-
ing replicate padding in a CNN model for coastal regions minimizes implied gradients
near coasts, which naturally reduces the magnitude of predictions from the model. This
approach offers a viable pathway whereby an existing CNN model trained on open wa-
ter data can be used to predict forces in coastal areas without generating strongly anoma-
lous outputs. This capability is crucial in online implementations of ML parameteriza-
tions because any extreme value introduced by CNN inference can eventually propagate
throughout the domain, contaminating the solution, or even leading to failure of the sim-
ulation.
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Open Research

The source code of the MOM6 version used for implementing the ML parameter-
ization is accessible through Zenodo (Hallberg et al., 2024), while the CNN model files
used for the online evaluation in this study (GZ21) can also be accessed via Zenodo (Zhang,
2024). The files for offline global evaluations can be accessed via Zenodo (Zhang & Guil-
laumin, 2024). To facilitate the setup process for the wind-driven double gyre case in the
study, we have made the setup files available online (Zhang, 2023).
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